首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3779篇
  免费   292篇
  国内免费   5篇
  2023年   15篇
  2022年   25篇
  2021年   77篇
  2020年   40篇
  2019年   64篇
  2018年   97篇
  2017年   64篇
  2016年   114篇
  2015年   176篇
  2014年   198篇
  2013年   262篇
  2012年   310篇
  2011年   346篇
  2010年   214篇
  2009年   175篇
  2008年   238篇
  2007年   261篇
  2006年   263篇
  2005年   243篇
  2004年   221篇
  2003年   171篇
  2002年   206篇
  2001年   30篇
  2000年   21篇
  1999年   28篇
  1998年   29篇
  1997年   21篇
  1996年   14篇
  1995年   14篇
  1994年   16篇
  1993年   15篇
  1992年   14篇
  1991年   12篇
  1990年   8篇
  1989年   8篇
  1988年   7篇
  1986年   4篇
  1985年   5篇
  1984年   3篇
  1983年   4篇
  1982年   4篇
  1981年   5篇
  1980年   3篇
  1979年   5篇
  1978年   4篇
  1977年   2篇
  1976年   6篇
  1975年   2篇
  1974年   5篇
  1971年   2篇
排序方式: 共有4076条查询结果,搜索用时 15 毫秒
1.
Irina C. Rivier 《Hydrobiologia》1996,320(1-3):235-241
Cyclops kolensis Lill. forms dense populations in different water-bodies of the Upper Volga basin. In spring, when the other planktonic crustaceans have not yet appeared, C. kolensis is an important food object for fishes. Its active reproduction occurs from April to the beginning of June. A rapid accumulation of stage IV copepodids in the plankton occurs in June and at 12–14° they sink into the pelogene in a diapause stage. During the summer stagnation period the diapausing copepodids are distributed evenly over the bottom; their abundance here is 0.7–0.8 million ind. m-2 (Rybinsk reservoir). During storms and autumn active water mixing the copepodids together with detritus are disturbed and brought to the deepest, silt rich, part of the water-bodies. After the ice formation and at the beginning of bottom heating the diapausing copepodids are transported by near bottom currents and are concentrated in depressions; their biomass here reaches 60 g m-3. After the thermo-oxy-cline formation they revive and begin to live actively. Copepodids feed, accumulate adipose matter and in February–March they begin to moult.  相似文献   
2.
Abstract. In this study we analyzed the expression patterns of loricrin in various species and tissues using immunohistochemistry, immunoblotting and Northern blots. Loricrin is a glycine-, serine- and cysteine-rich protein expressed very late in epidermal differentiation in the granular layers of normal mouse and human epidermis. Later on in differentiation, loricrin becomes cross-linked as a major component into the cornified cell envelope by the formation of Nɛ -(γ-glutamyl)lysine isopeptide bonds. This process either occurs directly or by the intermediate accumulation in L-keratohyaline granules of mouse epidermis and human acrosyringia. Loricrin was identified in all mammalian species analyzed by virtue of its highly conserved carboxy-terminal sequences revealing an electric mobility of ∼60 kDa in rodents, rabbit and cow and of ∼35 kDa in lamb and human on sodium dodecyl sulfate polyacrylamide gel electrophoresis. Loricrin is expressed in the granular layer of all mammalian orthokeratinizing epithelia tested including oral, esophageal and fore-stomach mucosa of rodents, tracheal squamous metaplasia of vitamin A deficient hamster and estrogen induced squamous vaginal epithelium of ovary ectomized rats. Loricrin is also expressed in a few parakeratinizing epithelia such as BBN [N-butyl-N-(4–hydroxybutyl)nitrosamine]-induced murine bladder carcinoma and a restricted subset of oral and single vaginal epithelial cells in higher mammals. Our results provide further evidence that the program of squamous differentiation in internal epithelia of the upper alimentary tract in rodents and higher mammals differ remarkably. In addition, we also have noted the distinct distribution patterns of human loricrin and involucrin, another major precursor protein of the cornified cell envelope.  相似文献   
3.
While the static magnitude of thermal pain perception has been shown to follow a power-law function of the temperature, its dynamical features have been largely overlooked. Due to the slow temporal experience of pain, multiple studies now show that the time evolution of its magnitude can be captured with continuous online ratings. Here we use such ratings to model quantitatively the temporal dynamics of thermal pain perception. We show that a differential equation captures the details of the temporal evolution in pain ratings in individual subjects for different stimulus pattern complexities, and also demonstrates strong predictive power to infer pain ratings, including readouts based only on brain functional images.  相似文献   
4.
5.
6.
The adaptive reactions of Vicia faba major L. cv. Bartom to 13-27 days soil flooding and to 14 days of drainage following 13-days of soil flooding were studied. Under flooding, oxygen diffusion rate (ODR) in the root zone decreased from 2.28–3.44 to 0.09–0.28?µmol O2 m?2 s?1; the soil redox potential (Eh) decreased from 543 to 70 mV. Upon drainage of flooded soil the ODR and Eh values returned to the control levels. Oxidative damage and defense systems in leaves were assessed by the concentration of thiobarbituric acid reactive substances (TBARs) and by the activities of superoxide dismutase (SOD) and glutathione reductase (GR). Two stages of stress development are described. During the first stage (1–13 days) shoot dry mass did not decrease, the TBARs concentration and SOD activity increased, the GR activity decreased. The second stage (13–27 days) was characterized by a decrease in the TBARs concentration, SOD and GR activities, pigment concentrations and shoot dry mass. Drainage of flooded soil resulted in elevated concentrations of TBARs and also increased the activities of SOD and GR. Increased SOD activity in the first stage of hypoxic stress development and activations of SOD and GR at oxygen re-entry to soil are responsible for tolerance of Vicia faba to hypoxic and post hypoxic stress associated with soil flooding and subsequent drainage.  相似文献   
7.
Rates of incorporation of [3H]phenylalanine and [14C]leucine from the aminoacylated transfer-RNA into polypeptides synthesized on poly(U) programmed Escherichia coli ribosomes have been determined in cell-free translation systems containing either elongation factors Tu and G with GTP, or just elongation factor Tu or G with GTP, or none of the elongation factors. The presence of elongation factor Tu with GTP has been shown to reduce the leucine to phenylalanine ratio in the product at relatively low concentrations of Mg2+. This error-reducing effect of elongation factor Tu has not been observed at high concentrations of Mg2+, although the factor still contributed to the speed of elongation. The results are discussed in terms of the kinetic proof-reading mechanism proposed by Hopfield (1974).  相似文献   
8.
The type III secretion system of the Salmonella flagellum consists of 6 integral membrane proteins: FlhA, FlhB, FliO, FliP, FliQ, and FliR. However, in some other type III secretion systems, a homologue of FliO is apparently absent, suggesting it has a specialized role. Deleting the fliO gene from the chromosome of a motile strain of Salmonella resulted in a drastic decrease of motility. Incubation of the ΔfliO mutant strain in motility agar, gave rise to pseudorevertants containing extragenic bypass mutations in FliP at positions R143H or F190L. Using membrane topology prediction programs, and alkaline phosphatase or GFPuv chimeric protein fusions into the FliO protein, we demonstrated that FliO is bitopic with its N-terminus in the periplasm and C-terminus in the cytoplasm. Truncation analysis of FliO demonstrated that overexpression of FliO43–125 or FliO1–95 was able to rescue motility of the ΔfliO mutant. Further, residue leucine 91 in the cytoplasmic domain was identified to be important for function. Based on secondary structure prediction, the cytoplasmic domain, FliO43–125, should contain beta-structure and alpha-helices. FliO43–125-Ala was purified and studied using circular dichroism spectroscopy; however, this domain was disordered, and its structure was a mixture of beta-sheet and random coil. Coexpression of full-length FliO with FliP increased expression levels of FliP, but coexpression with the cytoplasmic domain of FliO did not enhance FliP expression levels. Overexpression of the cytoplasmic domain of FliO further rescued motility of strains deleted for the fliO gene expressing bypass mutations in FliP. These results suggest FliO maintains FliP stability through transmembrane domain interaction. The results also demonstrate that the cytoplasmic domain of FliO has functionality, and it presumably becomes structured while interacting with its binding partners.  相似文献   
9.
Enzymes catalyze biochemical reactions in highly crowded environments where the amount of macromolecules may occupy up to 40% of the volume. Here we report how cell-like conditions tune catalytic parameters for the monomeric multi-copper oxidase, Saccharomyces cerevisiae Fet3p, in vitro. At low amounts of crowding agent, we detect increases in both of KM (weaker substrate binding) and kcat (improved catalytic efficiency), whereas at higher crowding levels, both parameters were reduced. Presence of crowding agents does not affect Fet3p structural content but increases thermal resistance. The observations are compatible with ordering of a non-optimal substrate-binding site and restricted internal dynamics as a result of excluded volume effects making the protein less structurally ‘strained’.  相似文献   
10.
The upstream coagulation enzymes are homologous trypsin-like serine proteases that typically function in enzyme-cofactor complexes, exemplified by coagulation factor VIIa (VIIa), which is allosterically activated upon binding to its cell surface receptor tissue factor (TF). TF cooperates with VIIa to create a bimolecular recognition surface that serves as an exosite for factor X binding. This study analyzes to what extent scissile bond docking to the catalytic cleft contributes to macromolecular substrate affinity. Mutation of the P1 Arg residue in factor X to Gln prevented activation by the TF.VIIa complex but did not reduce macromolecular substrate affinity for TF.VIIa. Similarly, mutations of the S and S' subsites in the catalytic cleft of the enzyme VIIa failed to reduce affinity for factor X, although the affinity for small chromogenic substrates and the efficiency of factor X scissile bond cleavage were reduced. Thus, docking of the activation peptide bond to the catalytic cleft of this enzyme-cofactor complex does not significantly contribute to affinity for macromolecular substrate. Rather, it appears that the creation of an extended macromolecular substrate recognition surface involving enzyme and cofactor is utilized to generate substrate specificity between the highly homologous, regulatory proteases of the coagulation cascade.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号