首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1101篇
  免费   80篇
  2023年   6篇
  2022年   7篇
  2021年   22篇
  2020年   20篇
  2019年   27篇
  2018年   44篇
  2017年   35篇
  2016年   58篇
  2015年   68篇
  2014年   88篇
  2013年   79篇
  2012年   124篇
  2011年   89篇
  2010年   62篇
  2009年   45篇
  2008年   83篇
  2007年   54篇
  2006年   50篇
  2005年   46篇
  2004年   50篇
  2003年   42篇
  2002年   32篇
  2001年   4篇
  2000年   9篇
  1999年   8篇
  1998年   7篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1974年   1篇
排序方式: 共有1181条查询结果,搜索用时 156 毫秒
1.
Plant and Soil - We investigated whether individuals of Silene paradoxa L., grown in serpentine and non-serpentine soils, displayed variation in functional traits and adaptive strategies...  相似文献   
2.
Anti PSA monoclonal antibodies for diagnostic use were produced in an in vitro system. After purification using Protein G affinity chromatography a percentage of about 10% of antibody aggregates remained. The use of monoclonal antibodies containing aggregates as a capture antibody in a diagnostic kit reduces the performance of the test making it often unacceptable. The aggregates could be eliminated using gel filtration chromatography but, in that way, the final recovery of the whole production process was only about 50%. Aggregation is favoured when the working pH is near to the isoelectric point of the antibody. We varied the culture medium composition, modifying pH and osmolarity. We tested different values of pH and osmolarity: 7.1, 7.5, 8.0, 8.5 for pH, and 300, 340, 367, 395 mOsm/kg H2O for osmolarity. By modification of the cell culture medium we obtained a significant decrease of monoclonal antibody aggregates in the production cycle. In this way we achieved higher recovery rate and could avoid gel filtration polishing step. The experiments were performed in two stages: first in culture flasks changing one parameter in each experiment, and then in spinner bottle using the best conditions obtained in the first stage. During scale up we used the modifications achieved from the experiment showed in this paper in our production by hollow fibre bioreactor with positive results.  相似文献   
3.
Paraquat (1,1'-dimethyl-4,4'-bipyridinium), a widely used non-selective herbicide, is a redox cycling agent with adverse effects on dopamine systems. Epidemiological data have shown that exposure to paraquat is one of the several risk factors for Parkinson's disease. We have already shown that cyclo(His-Pro), an endogenous cyclic dipeptide produced by the cleavage of the thyrotropin releasing hormone, has a cytoprotective effect through a mechanism involving Nrf2 activation that decreases production of reactive oxygen species and increases glutathione synthesis. Using primary neuronal cultures and PC12 cells as targets of paraquat neurotoxicity, we addressed whether and how cyclo(His-Pro) causes cellular protective response against paraquat-mediated cell death. We found that cyclo(His-Pro) attenuated reactive oxygen species production, and prevented glutathione depletion by up-regulating Nrf2 gene expression, triggering its nuclear accumulation and activating the expression of heme oxygenase1. These protective effects were abolished by RNA interference-mediated Nrf2 knock down whereas were unaffected by RNA interference-mediated Keap1 knock down. Inhibition of heme oxygenase activity decreased cyclo(His-Pro)-induced neuroprotection. These results suggest that cyclo(His-Pro), acting as a selective activator of the brain modulable Nrf2 pathway, may be a promising candidate as neuroprotective agent that act through induction of phase II genes.  相似文献   
4.
5.
Prions are infectious proteins that possess multiple self-propagating structures. The information for strains and structural specific barriers appears to be contained exclusively in the folding of the pathological isoform, PrPSc. Many recent studies determined that de novo prion strains could be generated in vitro from the structural conversion of recombinant (rec) prion protein (PrP) into amyloidal structures. Our aim was to elucidate the conformational diversity of pathological recPrP amyloids and their biological activities, as well as to gain novel insights in characterizing molecular events involved in mammalian prion conversion and propagation. To this end we generated infectious materials that possess different conformational structures. Our methodology for the prion conversion of recPrP required only purified rec full-length mouse (Mo) PrP and common chemicals. Neither infected brain extracts nor amplified PrPSc were used. Following two different in vitro protocols recMoPrP converted to amyloid fibrils without any seeding factor. Mouse hypothalamic GT1 and neuroblastoma N2a cell lines were infected with these amyloid preparations as fast screening methodology to characterize the infectious materials. Remarkably, a large number of amyloid preparations were able to induce the conformational change of endogenous PrPC to harbor several distinctive proteinase-resistant PrP forms. One such preparation was characterized in vivo habouring a synthetic prion with novel strain specified neuropathological and biochemical properties.  相似文献   
6.
7.
About 40% of the eukaryotic cell’s proteins are inserted co- or post-translationally in the endoplasmic reticulum (ER), where they attain the native structure under the assistance of resident molecular chaperones and folding enzymes. Subsequently, these proteins are secreted from cells or are transported to their sites of function at the plasma membrane or in organelles of the secretory and endocytic compartments. Polypeptides that are not delivered within the ER (mis-localized proteins, MLPs) are rapidly destroyed by cytosolic proteasomes, with intervention of the membrane protease ZMPSTE24 if they remained trapped in the SEC61 translocation machinery. Proteins that enter the ER, but fail to attain the native structure are rapidly degraded to prevent toxic accumulation of aberrant gene products. The ER does not contain degradative devices and the majority of misfolded proteins generated in this biosynthetic compartment are dislocated across the membrane for degradation by cytosolic 26S proteasomes by mechanisms and pathways collectively defined as ER-associated degradation (ERAD). Proteins that do not engage ERAD factors, that enter aggregates or polymers, are too large, display chimico/physical features that prevent dislocation across the ER membrane (ERAD-resistant misfolded proteins) are delivered to endo-lysosome for clearance, by mechanisms and pathways collectively defined as ER-to-lysosomes-associated degradation (ERLAD). Emerging evidences lead us to propose ERLAD as an umbrella term that includes the autophagic and non-autophagic pathways activated and engaged by ERAD-resistant misfolded proteins generated in the ER for delivery to degradative endo-lysosomes.  相似文献   
8.
In the present work, variability of both cytoplasmic and nuclear microsatellite traits was investigated with the aim of characterizing a set of rosemary germplasm resources (Salvia rosmarinus). Most of the materials were collected in Italy and France. High‐resolution melting curves were compared each other computing their Euclidean distances and estimating the differences within their principal component as a measure of genetic diversity. Mantel correlation results combined to linear discriminant analysis allowed examined populations to be divided in four principal groups corresponding to four geographic areas, with few interesting and discussed exceptions. As rosemary propagates by seeds coming from insect mediated pollination, steady wild populations can be expected to be in panmictic equilibrium. Gained results confirmed and extended precedent characterization of rosemary genotypes and are compatible with the distribution of other Mediterranean species, as well as with the presence of a glacial refugium in the north‐east area of Sardinia previously described. As the officinal use of this aromatic shrub is spreading, characterization and conservation of wild Mediterranean germplasm is gaining strategic importance. A core collection of 100 genotypes was pointed out as suitable for a cheaper biodiversity ex situ preservation as well as for subsequent metabolic and linkage disequilibrium analyses.  相似文献   
9.
The emergence of agricultural land use change creates a number of challenges that insect pollinators, such as eusocial bees, must overcome. Resultant fragmentation and loss of suitable foraging habitats, combined with pesticide exposure, may increase demands on foraging, specifically the ability to collect or reach sufficient resources under such stress. Understanding effects that pesticides have on flight performance is therefore vital if we are to assess colony success in these changing landscapes. Neonicotinoids are one of the most widely used classes of pesticide across the globe, and exposure to bees has been associated with reduced foraging efficiency and homing ability. One explanation for these effects could be that elements of flight are being affected, but apart from a couple of studies on the honeybee (Apis mellifera), this has scarcely been tested. Here, we used flight mills to investigate how exposure to a field realistic (10 ppb) acute dose of imidacloprid affected flight performance of a wild insect pollinator—the bumblebee, Bombus terrestris audax. Intriguingly, observations showed exposed workers flew at a significantly higher velocity over the first ¾ km of flight. This apparent hyperactivity, however, may have a cost because exposed workers showed reduced flight distance and duration to around a third of what control workers were capable of achieving. Given that bumblebees are central place foragers, impairment to flight endurance could translate to a decline in potential forage area, decreasing the abundance, diversity, and nutritional quality of available food, while potentially diminishing pollination service capabilities.  相似文献   
10.
The plasma membrane of cells has a complex architecture based on the bidimensional liquid-crystalline bilayer arrangement of phospho- and sphingolipids, which in turn embeds several proteins and is connected to the cytoskeleton. Several studies highlight the spatial membrane organization into more ordered (Lo or lipid raft) and more disordered (Ld) domains. We here report on a fluorescent analog of the green fluorescent protein chromophore that, when conjugated to a phospholipid, enables the quantification of the Lo and Ld domains in living cells on account of its large fluorescence lifetime variation in the two phases. The domain composition is straightforwardly obtained by the phasor approach to confocal fluorescence lifetime imaging, a graphical method that does not require global fitting of the fluorescence decay in every spatial position of the sample. Our imaging strategy was applied to recover the domain composition in human oligodendrocytes at rest and under treatment with galactosylsphingosine (psychosine). Exogenous psychosine administration recapitulates many of the molecular fingerprints of a severe neurological disease, globoid cell leukodystrophy, better known as Krabbe disease. We found out that psychosine progressively destabilizes plasma membrane, as witnessed by a shrinking of the Lo fraction. The unchanged levels of galactosyl ceramidase, i.e., the enzyme lacking in Krabbe disease, upon psychosine treatment suggest that psychosine alters the plasma membrane structure by direct physical effect, as also recently demonstrated in model membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号