首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7147篇
  免费   504篇
  国内免费   3篇
  2023年   39篇
  2022年   43篇
  2021年   107篇
  2020年   111篇
  2019年   93篇
  2018年   208篇
  2017年   194篇
  2016年   270篇
  2015年   411篇
  2014年   442篇
  2013年   520篇
  2012年   629篇
  2011年   580篇
  2010年   368篇
  2009年   301篇
  2008年   468篇
  2007年   416篇
  2006年   419篇
  2005年   389篇
  2004年   364篇
  2003年   295篇
  2002年   276篇
  2001年   60篇
  2000年   46篇
  1999年   44篇
  1998年   39篇
  1997年   38篇
  1996年   28篇
  1995年   35篇
  1994年   25篇
  1993年   34篇
  1992年   33篇
  1991年   18篇
  1990年   28篇
  1989年   16篇
  1988年   14篇
  1987年   14篇
  1986年   14篇
  1985年   18篇
  1984年   15篇
  1983年   22篇
  1982年   18篇
  1981年   14篇
  1980年   12篇
  1979年   14篇
  1978年   17篇
  1976年   8篇
  1975年   19篇
  1974年   11篇
  1973年   13篇
排序方式: 共有7654条查询结果,搜索用时 62 毫秒
1.
Mobile transposable elements are among the primary drivers of the evolution of eukaryotic genomes. For fungi, repeat-induced point mutation (RIP) silencing minimizes deleterious effects of transposons by mutating multicopy DNA during meiosis. In this study we identify five transposon species from the mitosporic fungus Colletotrichum cereale and report the signature pattern of RIP acting in a lineage-specific manner on 21 of 35 unique transposon copies, providing the first evidence for sexual recombination for this species. Sequence analysis of genomic populations of the retrotransposon Ccret2 showed repeated rounds of RIP mutation acting on different copies of the element. In the RIPped Ccret2 population, there were multiple inferences of incongruence primarily attributed to RIP-induced homoplasy. This study supports the view that the sequence variability of transposon populations in filamentous fungi reflects the activities of evolutionary processes that fall outside of typical phylogenetic or population genetic reconstructions.  相似文献   
2.
3.
4.
In eukaryotes, small RNAs play important roles in both gene regulation and resistance to viral infection. Argonaute proteins have been identified as a key component of the effector complexes of various RNA-silencing pathways, but the mechanistic roles of Argonaute proteins in these pathways are not clearly understood. To address this question, we performed single-molecule fluorescence experiments using an RNA-induced silencing complex (core-RISC) composed of a small RNA and human Argonaute 2. We found that target binding of core-RISC starts at the seed region of the guide RNA. After target binding, four distinct reactions followed: target cleavage, transient binding, stable binding, and Argonaute unloading. Target cleavage required extensive sequence complementarity and accelerated core-RISC dissociation for recycling. In contrast, the stable binding of core-RISC to target RNAs required seed-match only, suggesting a potential explanation for the seed-match rule of microRNA (miRNA) target selection. [BMB Reports 2015; 48(12): 643-644]  相似文献   
5.
Summary   Calathea dryadica and Calathea reginae are described, circumscribed and illustrated. These new species are probably endemic to the Atlantic Forest of Rio de Janeiro State in Southeast Brazil and are considered critically endangered because of the restricted geographic area of occurrence, sometimes enclosed by densely urbanised areas.  相似文献   
6.
Transthyretin (TTR) protects against A-Beta toxicity by binding the peptide thus inhibiting its aggregation. Previous work showed different TTR mutations interact differently with A-Beta, with increasing affinities correlating with decreasing amyloidogenecity of the TTR mutant; this did not impact on the levels of inhibition of A-Beta aggregation, as assessed by transmission electron microscopy. Our work aimed at probing differences in binding to A-Beta by WT, T119M and L55P TTR using quantitative assays, and at identifying factors affecting this interaction. We addressed the impact of such factors in TTR ability to degrade A-Beta. Using a dot blot approach with the anti-oligomeric antibody A11, we showed that A-Beta formed oligomers transiently, indicating aggregation and fibril formation, whereas in the presence of WT and T119M TTR the oligomers persisted longer, indicative that these variants avoided further aggregation into fibrils. In contrast, L55PTTR was not able to inhibit oligomerization or to prevent evolution to aggregates and fibrils. Furthermore, apoptosis assessment showed WT and T119M TTR were able to protect against A-Beta toxicity. Because the amyloidogenic potential of TTR is inversely correlated with its stability, the use of drugs able to stabilize TTR tetrameric fold could result in increased TTR/A-Beta binding. Here we showed that iododiflunisal, 3-dinitrophenol, resveratrol, [2-(3,5-dichlorophenyl)amino] (DCPA) and [4-(3,5-difluorophenyl)] (DFPB) were able to increase TTR binding to A-Beta; however only DCPA and DFPB improved TTR proteolytic activity. Thyroxine, a TTR ligand, did not influence TTR/A-Beta interaction and A-Beta degradation by TTR, whereas RBP, another TTR ligand, not only obstructed the interaction but also inhibited TTR proteolytic activity. Our results showed differences between WT and T119M TTR, and L55PTTR mutant regarding their interaction with A-Beta and prompt the stability of TTR as a key factor in this interaction, which may be relevant in AD pathogenesis and for the design of therapeutic TTR-based therapies.  相似文献   
7.

In this review, we address the regulatory and toxic role of ·NO along several pathways, from the gut to the brain. Initially, we address the role on ·NO in the regulation of mitochondrial respiration with emphasis on the possible contribution to Parkinson’s disease via mechanisms that involve its interaction with a major dopamine metabolite, DOPAC. In parallel with initial discoveries of the inhibition of mitochondrial respiration by ·NO, it became clear the potential for toxic ·NO-mediated mechanisms involving the production of more reactive species and the post-translational modification of mitochondrial proteins. Accordingly, we have proposed a novel mechanism potentially leading to dopaminergic cell death, providing evidence that NO synergistically interact with DOPAC in promoting cell death via mechanisms that involve GSH depletion. The modulatory role of NO will be then briefly discussed as a master regulator on brain energy metabolism. The energy metabolism in the brain is central to the understanding of brain function and disease. The core role of ·NO in the regulation of brain metabolism and vascular responses is further substantiated by discussing its role as a mediator of neurovascular coupling, the increase in local microvessels blood flow in response to spatially restricted increase of neuronal activity. The many facets of NO as intracellular and intercellular messenger, conveying information associated with its spatial and temporal concentration dynamics, involve not only the discussion of its reactions and potential targets on a defined biological environment but also the regulation of its synthesis by the family of nitric oxide synthases. More recently, a novel pathway, out of control of NOS, has been the subject of a great deal of controversy, the nitrate:nitrite:NO pathway, adding new perspectives to ·NO biology. Thus, finally, this novel pathway will be addressed in connection with nitrate consumption in the diet and the beneficial effects of protein nitration by reactive nitrogen species.

  相似文献   
8.
Mesenchymal stem cells (MSCs) are viewed as safe, readily available and promising adult stem cells, which are currently used in several clinical trials. Additionally, their soluble-factor secretion and multi-lineage differentiation capacities place MSCs in the forefront of stem cell types with expected near-future clinical applications. In the present work MSCs were isolated from the umbilical cord matrix (Wharton''s jelly) of human umbilical cord samples. The cells were thoroughly characterized and confirmed as bona-fide MSCs, presenting in vitro low generation time, high proliferative and colony-forming unit-fibroblast (CFU-F) capacity, typical MSC immunophenotype and osteogenic, chondrogenic and adipogenic differentiation capacity. The cells were additionally subjected to an oligodendroglial-oriented step-wise differentiation protocol in order to test their neural- and oligodendroglial-like differentiation capacity. The results confirmed the neural-like plasticity of MSCs, and suggested that the cells presented an oligodendroglial-like phenotype throughout the differentiation protocol, in several aspects sharing characteristics common to those of bona-fide oligodendrocyte precursor cells and differentiated oligodendrocytes.  相似文献   
9.
Nucleoside transporters have a variety of functions in the cell, such as the provision of substrates for nucleic acid synthesis and the modulation of purine receptors by determining agonist availability. They also transport a wide range of nucleoside-derived antiviral and anticancer drugs. Most mammalian cells coexpress several nucleoside transporter isoforms at the plasma membrane, which are differentially regulated. This paper reviews studies on nucleoside transporter regulation, which has been extensively characterized in the laboratory in several model systems: the hepatocyte, an epithelial cell type, and immune system cells, in particular B cells, which are non-polarized and highly specialized. The hepatocyte co-expresses at least two Na+-dependent nucleoside transporters, CNT1 and CNT2, which are up-regulated during cell proliferation but may undergo selective loss in certain experimental models of hepatocarcinomas. This feature is consistent with evidence that CNT expression also depends on the differentiation status of the hepatocyte. Moreover, substrate availability also modulates CNT expression in epithelial cells, as reported for hepatocytes and jejunum epithelia from rats fed nucleotide-deprived diets. In human B cell lines, CNT and ENT transporters are co-expressed but differentially regulated after B cell activation triggered by cytokines or phorbol esters, as described for murine bone marrow macrophages induced either to activate or to proliferate. The complex regulation of the expression and activity of nucleoside transporters hints at their relevance in cell physiology.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号