首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4125篇
  免费   383篇
  国内免费   119篇
  2023年   27篇
  2022年   30篇
  2021年   124篇
  2020年   88篇
  2019年   112篇
  2018年   135篇
  2017年   91篇
  2016年   125篇
  2015年   212篇
  2014年   220篇
  2013年   283篇
  2012年   319篇
  2011年   276篇
  2010年   196篇
  2009年   150篇
  2008年   155篇
  2007年   188篇
  2006年   156篇
  2005年   153篇
  2004年   139篇
  2003年   124篇
  2002年   92篇
  2001年   101篇
  2000年   78篇
  1999年   74篇
  1998年   43篇
  1997年   40篇
  1996年   34篇
  1995年   38篇
  1994年   45篇
  1993年   30篇
  1992年   71篇
  1991年   48篇
  1990年   50篇
  1989年   54篇
  1988年   36篇
  1987年   38篇
  1986年   34篇
  1985年   35篇
  1984年   36篇
  1983年   27篇
  1982年   32篇
  1981年   17篇
  1979年   25篇
  1977年   20篇
  1976年   16篇
  1975年   21篇
  1974年   20篇
  1973年   20篇
  1971年   19篇
排序方式: 共有4627条查询结果,搜索用时 15 毫秒
1.
Although cryopreservation has been developed and optimized over the past decades, it causes various stresses, including cold shock, osmotic stress, and ice crystal formation, thereby reducing fertility. During cryopreservation, addition of cryoprotective agent (CPA) is crucial for protecting spermatozoa from freezing damage. However, the intrinsic toxicity and osmotic stress induced by CPA cause damage to spermatozoa. To identify the effects of CPA addition during cryopreservation, we assessed the motility (%), motion kinematics, capacitation status, and viability of epididymal spermatozoa using computer-assisted sperm analysis and Hoechst 33258/chlortetracycline fluorescence staining. Moreover, the effects of CPA addition were also demonstrated at the proteome level using two-dimensional electrophoresis. Our results demonstrated that CPA addition significantly reduced sperm motility (%), curvilinear velocity, viability (%), and non-capacitated spermatozoa, whereas straightness and acrosome-reacted spermatozoa increased significantly (p < 0.05). Ten proteins were differentially expressed (two decreased and eight increased) (>3 fold, p < 0.05) after CPA, whereas NADH dehydrogenase flavoprotein 2, f-actin-capping protein subunit beta, superoxide dismutase 2, and outer dense fiber protein 2 were associated with several important signaling pathways (p < 0.05). The present study provides a mechanistic basis for specific cryostresses and potential markers of CPA-induced stress. Therefore, these might provide information about the development of safe biomaterials for cryopreservation and basic ground for sperm cryopreservation.  相似文献   
2.
3.
The BNIP-2 and Cdc42GAP homology (BCH) domain is a novel regulator for Rho GTPases, but its impact on p50-Rho GTPase-activating protein (p50RhoGAP or Cdc42GAP) in cells remains elusive. Here we show that deletion of the BCH domain from p50RhoGAP enhanced its GAP activity and caused drastic cell rounding. Introducing constitutively active RhoA or inactivating GAP domain blocked such effect, whereas replacing the BCH domain with endosome-targeting SNX3 excluded requirement of endosomal localization in regulating the GAP activity. Substitution with homologous BCH domain from Schizosaccharomyces pombe, which does not bind mammalian RhoA, also led to complete loss of suppression. Interestingly, the p50RhoGAP BCH domain only targeted RhoA, but not Cdc42 or Rac1, and it was unable to distinguish between GDP and the GTP-bound form of RhoA. Further mutagenesis revealed a RhoA-binding motif (residues 85-120), which when deleted, significantly reduced BCH inhibition on GAP-mediated cell rounding, whereas its full suppression also required an intramolecular interaction motif (residues 169-197). Therefore, BCH domain serves as a local modulator in cis to sequester RhoA from inactivation by the adjacent GAP domain, adding to a new paradigm for regulating p50RhoGAP signaling.  相似文献   
4.
Specific binding of PapI to Lrp-pap DNA complexes.   总被引:5,自引:2,他引:3       下载免费PDF全文
  相似文献   
5.
6.
7.
8.
The soluble subcellular fraction of a chlB mutant contains an inactive precursor form of the molybdoenzyme nitrate reductase, which can be activated by the addition to the soluble fraction of protein FA, which is thought to be the active product of the chlB locus. Dialysis or desalting of the chlB soluble fraction leads to the loss of nitrate reductase activation, indicating that some low-molecular-weight material is required for the activation. The protein FA-dependent activation of nitrate reductase can be restored to the desalted chlB soluble fraction by the addition of a clarified extract obtained after heating the chlB soluble fraction at 100 degrees C for 8 min. The heat-stable substance present in this preparation has a molecular weight of approximately 1,000. This substance is distinct from the active molybdenum cofactor since its activity is unimpaired in heat-treated extracts prepared from the organism grown in the presence of tungstate, which leads to loss of cofactor activity. Mutations at the chlA or chlE locus, which are required for molybdenum cofactor biosynthesis, similarly do not affect the activity of the heat-treated extract in the in vitro activation process. Moreover, the active material can be separated from the molybdenum cofactor activity by gel filtration. None of the other known pleiotropic chlorate resistance loci (chlD, chlG) are required for the expression of its activity. Magnesium ATP appears to have a role in the formation of the active substance. We conclude that a low-molecular-weight substance, distinct from the active molybdenum cofactor, is required to bestow activity on the molybdoenzyme nitrate reductase during its biosynthesis.  相似文献   
9.
Decay-accelerating factor (DAF) is an integral membrane protein that inhibits amplification of the complement cascade on the cell surface. We and other investigators have shown that DAF is part of a newly characterized family of proteins that are anchored to the cell membrane by phosphatidylinositol (PI). The group includes the variant surface glycoprotein (VSG) of African trypanosomes, the p63 protein of Leishmania, acetylcholinesterase (AChE), alkaline phosphatase, Thy-1, 5'-nucleotidase, and RT6.2--an alloantigen from rat T cells. The structure of the membrane anchor has been best characterized for VSG, but chemical studies of the membrane anchors of AChE and Thy-1 suggest that similar glycolipid moieties anchor these proteins to the cell surface. In the VSG, the membrane anchor consists of an ethanolamine linked covalently to an oligosaccharide and glucosamine; the entire complex is anchored to the cell membrane by PI. Immunologically, this glycolipid defines an epitope, the cross-reacting determinant (CRD), that is only revealed after removal of the diacyl glycerol anchor by a phospholipase C. By Western blotting, we show here that DAF-S (DAF released from the membrane by PI-specific phospholipase C [PIPLC]) also contains CRD. Using a newly developed immunoradiometric assay (IRMA) in which the solid-phase capturing antibody is a monoclonal antibody to DAF and the second antibody is anti-CRD, we have been able to quantitate DAF-S. By IRMA, we show that the reaction between anti-CRD and DAF-S is specific, since the binding is competitively inhibited only by the soluble form of the VSG. These observations further support the concept that the glycolipid anchors of this new family of proteins have similar structures. DAF is also found as a soluble protein in various tissue fluids as well as in Hela cell supernatants. No evidence for the presence of the CRD epitope was found on these proteins, suggesting that these forms of DAF are not released from the surface of cells by endogenous phospholipases.  相似文献   
10.
Phosphatidylinositol anchor of HeLa cell alkaline phosphatase   总被引:7,自引:0,他引:7  
R Jemmerson  M G Low 《Biochemistry》1987,26(18):5703-5709
Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either 3H-fatty acids or [3H]ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the 3H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of [3H]ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from 3H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the 3H-fatty acid and the [3H]ethanolamine label from the purified alkaline phosphatase. Subtilisin was also able to remove the [3H]ethanolamine-labeled from purified alkaline phosphatase. The 3H radioactivity in alkaline phosphatase purified from [3H]ethanolamine-labeled cells comigrated with authentic [3H]ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the 3H-fatty acid and [3H]ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号