首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3955篇
  免费   171篇
  国内免费   2篇
  2023年   6篇
  2022年   4篇
  2021年   15篇
  2020年   23篇
  2019年   18篇
  2018年   37篇
  2017年   48篇
  2016年   71篇
  2015年   98篇
  2014年   97篇
  2013年   179篇
  2012年   394篇
  2011年   972篇
  2010年   434篇
  2009年   487篇
  2008年   183篇
  2007年   145篇
  2006年   136篇
  2005年   129篇
  2004年   142篇
  2003年   131篇
  2002年   101篇
  2001年   25篇
  2000年   22篇
  1999年   19篇
  1998年   14篇
  1997年   16篇
  1996年   8篇
  1995年   14篇
  1994年   8篇
  1993年   6篇
  1992年   22篇
  1991年   8篇
  1990年   12篇
  1989年   9篇
  1988年   14篇
  1987年   9篇
  1986年   4篇
  1985年   17篇
  1984年   7篇
  1983年   5篇
  1982年   4篇
  1981年   2篇
  1980年   11篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1974年   3篇
  1972年   2篇
排序方式: 共有4128条查询结果,搜索用时 20 毫秒
1.
Flexible manufacturing system control is an NP-hard problem. A cyclic approach has been demonstrated to be adequate for an infinite scheduling problem because of maximal throughput reachability. However, it is not the only optimization criterion in general. In this article we consider the minimization of the work in process (WIP) as an economical and productivity factor. We propose a new cyclic scheduling algorithm giving the maximal throughput (a hard constraint) while minimizing WIP. This algorithm is based on progressive operations placing. A controlled beam search approach has been developed to determine at each step the schedule of the next operations. After presenting the main principles of the algorithm, we compare our approach to several most known cyclic scheduling algorithms using a significant existing example from the literature.  相似文献   
2.
Accurate transfer RNA (tRNA) aminoacylation by aminoacyl-tRNA synthetases controls translational fidelity. Although tRNA synthetases are generally highly accurate, recent results show that the methionyl-tRNA synthetase (MetRS) is an exception. MetRS readily misacylates non-methionyl tRNAs at frequencies of up to 10% in mammalian cells; such mismethionylation may serve a beneficial role for cells to protect their own proteins against oxidative damage. The Escherichia coli MetRS mismethionylates two E. coli tRNA species in vitro, and these two tRNAs contain identity elements for mismethionylation. Here we investigate tRNA mismethionylation in Saccharomyces cerevisiae. tRNA mismethionylation occurs at a similar extent in vivo as in mammalian cells. Both cognate and mismethionylated tRNAs have similar turnover kinetics upon cycloheximide treatment. We identify specific arginine/lysine to methionine-substituted peptides in proteomic mass spectrometry, indicating that mismethionylated tRNAs are used in translation. The yeast MetRS is part of a complex containing the anchoring protein Arc1p and the glutamyl-tRNA synthetase (GluRS). The recombinant Arc1p–MetRS–GluRS complex binds and mismethionylates many tRNA species in vitro. Our results indicate that the yeast MetRS is responsible for extensive misacylation of non-methionyl tRNAs, and mismethionylation also occurs in this evolutionary branch.  相似文献   
3.
4.
5.
6.
7.
Alternative splicing of 3′-terminal exons plays a critical role in gene expression by producing mRNA with distinct 3′-untranslated regions that regulate their fate and their expression. The Xenopus α-tropomyosin pre-mRNA possesses a composite internal/3′-terminal exon (exon 9A9′) that is differentially processed depending on the embryonic tissue. Exon 9A9′ is repressed in non-muscle tissue by the polypyrimidine tract binding protein, whereas it is selected as a 3′-terminal or internal exon in myotomal cells and adult striated muscles, respectively. We report here the identification of an intronic regulatory element, designated the upstream terminal exon enhancer (UTE), that is required for the specific usage of exon 9A9′ as a 3′-terminal exon in the myotome. We demonstrate that polypyrimidine tract binding protein prevents the activity of UTE in non-muscle cells, whereas a subclass of serine/arginine rich (SR) proteins promotes the selection of exon 9A9′ in a UTE-dependent way. Morpholino-targeted blocking of UTE in the embryo strongly reduced the inclusion of exon 9A9′ as a 3′-terminal exon in the endogenous mRNA, demonstrating the function of UTE under physiological circumstances. This strategy allowed us to reveal a splicing pathway that generates a mRNA with no in frame stop codon and whose steady-state level is translation-dependent. This result suggests that a non-stop decay mechanism participates in the strict control of the 3′-end processing of the α-tropomyosin pre-mRNA.  相似文献   
8.
9.
The 10-subunit RNA exosome is involved in a large number of diverse RNA processing and degradation events in eukaryotes. These reactions are carried out by the single catalytic subunit, Rrp44p/Dis3p, which is composed of three parts that are conserved throughout eukaryotes. The exosome is named for the 3′ to 5′ exoribonuclease activity provided by a large C-terminal region of the Rrp44p subunit that resembles other exoribonucleases. Rrp44p also contains an endoribonuclease domain. Finally, the very N-terminus of Rrp44p contains three Cys residues (CR3 motif) that are conserved in many eukaryotes but have no known function. These three conserved Cys residues cluster with a previously unrecognized conserved His residue in what resembles a metal-ion-binding site. Genetic and biochemical data show that this CR3 motif affects both endo- and exonuclease activity in vivo and both the nuclear and cytoplasmic exosome, as well as the ability of Rrp44p to associate with the other exosome subunits. These data provide the first direct evidence that the exosome-Rrp44p interaction is functionally important and also provides a molecular explanation for the functional defects when the conserved Cys residues are mutated.  相似文献   
10.
Phragmites australis and Glyceria maxima are fast-growing littoral grasses often competing for similar wetland habitats. Eutrophication affects their competitiveness, but the outcome is not generally predictable due to the complexity of interrelated factors. We hypotheses that pore water N:P and NH4 +:NO3 ? modify their growth and metabolic responses to the trophic status of the habitat. The hypothesis was tested under standardized conditions of long-term sand cultures. Application of N?+?P up to extreme levels in combination with N:P?<?10 and NH4 +:NO3 ??<?1 triggered positive growth response in both species. In contrast, similar N levels applied in N:P?>?90 and NH4 +:NO3 ??=?4 caused lower productivity, changes in resource allocation, morphology and metabolic relations (e.g. high shoot density, low shoot diameters and heights, reduced root and rhizome growth). Observed signs of stress resembled the factors associated with the reed retreat at the die-back sites. Unbalanced N levels obviously alter plant susceptibility to stresses (altering, e.g. ventilation efficiency, plant anchorage or below-ground storage capacity). The positive effect of sufficient P supply was pronounced in Glyceria. It might therefore favour Glyceria in competition with Phragmites at highly fertile habitats rich in P.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号