首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   536篇
  免费   55篇
  2023年   4篇
  2022年   5篇
  2021年   17篇
  2020年   23篇
  2019年   15篇
  2018年   21篇
  2017年   13篇
  2016年   24篇
  2015年   34篇
  2014年   39篇
  2013年   40篇
  2012年   44篇
  2011年   40篇
  2010年   20篇
  2009年   15篇
  2008年   32篇
  2007年   26篇
  2006年   29篇
  2005年   11篇
  2004年   16篇
  2003年   6篇
  2002年   11篇
  2001年   4篇
  2000年   6篇
  1999年   6篇
  1998年   4篇
  1997年   5篇
  1995年   3篇
  1993年   5篇
  1992年   10篇
  1991年   3篇
  1990年   6篇
  1989年   3篇
  1988年   5篇
  1987年   6篇
  1986年   4篇
  1985年   3篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1971年   2篇
  1970年   2篇
  1965年   2篇
  1961年   1篇
  1954年   1篇
  1942年   1篇
  1908年   1篇
  1907年   1篇
排序方式: 共有591条查询结果,搜索用时 15 毫秒
1.
We have identified a mutation of human gamma-interferon (IFN gamma) causing a temperature-sensitive phenotype. We used a randomized oligonucleotide to mutagenize a synthetic human IFN gamma gene, then screened the resulting mutants produced in Escherichia coli for proteins with altered biological activity. One mutant protein selected for detailed characterization exhibited less than 0.3% of the specific biological activity of native IFN gamma in an antiviral activity assay performed at 37 degrees C. However, the protein bound the human IFN gamma receptor with native efficiency at 4 degrees C. Sequencing the plasmid DNA encoding this protein showed that the mutation changed the lysine residue at amino acid 43 to glutamic acid (IFN gamma/K43E). Site-specific mutagenesis at amino acid 43 showed that this protein's phenotype resulted from positioning a negative charge at position 43. Structural characterization of IFN gamma/K43E using CD demonstrated that the protein had native conformation at 25 degrees C, but assumed an altered conformation at 37 degrees C. IFN gamma/K43E in this altered conformation bound poorly to the IFN gamma receptor at 37 degrees C, providing a rationale for the mutant's decreased antiviral activity.  相似文献   
2.
3.
The pleiotropic effects of the insulin-sensitizing adipokine adiponectin are mediated, at least in part, by two seven-transmembrane domain receptors AdipoR1 and AdipoR2. Recent reports indicate a role for AdipoR-binding proteins, namely APPL1, RACK1 and CK2β, in proximal signal transduction events. Here we demonstrate that endoplasmic reticulum protein 46 (ERp46) interacts specifically with AdipoR1 and provide evidence that ERp46 modulates adiponectin signalling. Co-immunoprecipitation followed by mass spectrometry identified ERp46 as an AdipoR1-, but not AdipoR2-, interacting protein. Analysis of truncated constructs and GST-fusion proteins revealed the interaction was mediated by the cytoplasmic, N-terminal residues (1-70) of AdipoR1. Indirect immunofluorescence microscopy and subcellular fractionation studies demonstrated that ERp46 was present in the ER and the plasma membrane (PM). Transient knockdown of ERp46 increased the levels of AdipoR1, and AdipoR2, at the PM and this correlated with increased adiponectin-stimulated phosphorylation of AMPK. In contrast, adiponectin-stimulated phosphorylation of p38MAPK was reduced following ERp46 knockdown. Collectively these results establish ERp46 as the first AdipoR1-specific interacting protein and suggest a role for ERp46 in adiponectin receptor biology and adiponectin signalling.  相似文献   
4.
5.
6.
Approximately 1%–2% of cutaneous melanoma (CM) is classified as strongly familial. We sought to investigate unexplained CM predisposition in families negative for the known susceptibility genes using next‐generation sequencing of affected individuals. Segregation of germline variants of interest within families was assessed by Sanger sequencing. Several heterozygous variants in oculocutaneous albinism (OCA) genes: TYR, OCA2, TYRP1 and SLC45A2, were present in our CM cohort. OCA is a group of autosomal recessive genetic disorders, resulting in pigmentation defects of the eyes, hair and skin. Missense variants classified as pathogenic for OCA were present in multiple families and some fully segregated with CM. The functionally compromised TYR p.T373K variant was present in three unrelated families. In OCA2, known pathogenic variants: p.V443I and p.N489D, were present in three families and one family, respectively. We identified a likely pathogenic SLC45A2 frameshift variant that fully segregated with CM in a family of four cases. Another four‐case family harboured cosegregating variants (p.A24T and p.R153C) of uncertain functional significance in TYRP1. We conclude that rare, heterozygous variants in OCA genes confer moderate risk for CM.  相似文献   
7.
8.
In this study, we developed a microfluidics method, using a so-called H-cell microfluidics device, for the determination of protein diffusion coefficients at different concentrations, pHs, ionic strengths, and solvent viscosities. Protein transfer takes place in the H-cell channels between two laminarly flowing streams with each containing a different initial protein concentration. The protein diffusion coefficients are calculated based on the measured protein mass transfer, the channel dimensions, and the contact time between the two streams. The diffusion rates of lysozyme, cytochrome c, myoglobin, ovalbumin, bovine serum albumin, and etanercept were investigated. The accuracy of the presented methodology was demonstrated by comparing the measured diffusion coefficients with literature values measured under similar solvent conditions using other techniques. At low pH and ionic strength, the measured lysozyme diffusion coefficient increased with the protein concentration gradient, suggesting stronger and more frequent intermolecular interactions. At comparable concentration gradients, the measured lysozyme diffusion coefficient decreased drastically as a function of increasing ionic strength (from zero onwards) and increasing medium viscosity. Additionally, a particle tracing numerical simulation was performed to achieve a better understanding of the macromolecular displacement in the H-cell microchannels. It was found that particle transfer between the two channels tends to speed up at low ionic strength and high concentration gradient. This confirms the corresponding experimental observation of protein diffusion measured via the H-cell microfluidics.  相似文献   
9.
Coxiella burnetii, the causative agent of the human disease Q fever, is a unique intracellular bacterial pathogen. Coxiella replicates to high numbers within a pathogen‐derived lysosome‐like vacuole, thriving within a low pH, highly proteolytic and oxidative environment. In 2009, researchers developed means to axenically culture Coxiella paving the way for the development of tools to genetically manipulate the organism. These advances have revolutionized our capacity to examine the pathogenesis of Coxiella. In recent years, targeted and random mutant strains have been used to demonstrate that the Dot/Icm type IV secretion system is essential for intracellular replication of Coxiella. Current research is focused towards understanding the unique cohort of over 130 effector proteins that are translocated into the host cell. Mutagenesis screens have been employed to identify effectors that play important roles for the biogenesis of the Coxiella‐containing vacuole and intracellular replication of Coxiella. A surprisingly high number of effector mutants demonstrate significant intracellular growth defects, and future studies on the molecular function of these effectors will provide great insight into the pathogenesis of Coxiella. Already, this expanse of new data implicates many eukaryotic processes that are targeted by the arsenal of Coxiella effectors including autophagy, apoptosis and vesicular trafficking.  相似文献   
10.
In all but the most sterile environments bacteria will reside in fluid being transported through conduits and some of these will attach and grow as biofilms on the conduit walls. The concentration and diversity of bacteria in the fluid at the point of delivery will be a mix of those when it entered the conduit and those that have become entrained into the flow due to seeding from biofilms. Examples include fluids through conduits such as drinking water pipe networks, endotracheal tubes, catheters and ventilation systems. Here we present two probabilistic models to describe changes in the composition of bulk fluid microbial communities as they are transported through a conduit whilst exposed to biofilm communities. The first (discrete) model simulates absolute numbers of individual cells, whereas the other (continuous) model simulates the relative abundance of taxa in the bulk fluid. The discrete model is founded on a birth-death process whereby the community changes one individual at a time and the numbers of cells in the system can vary. The continuous model is a stochastic differential equation derived from the discrete model and can also accommodate changes in the carrying capacity of the bulk fluid. These models provide a novel Lagrangian framework to investigate and predict the dynamics of migrating microbial communities. In this paper we compare the two models, discuss their merits, possible applications and present simulation results in the context of drinking water distribution systems. Our results provide novel insight into the effects of stochastic dynamics on the composition of non-stationary microbial communities that are exposed to biofilms and provides a new avenue for modelling microbial dynamics in systems where fluids are being transported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号