首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   6篇
  2023年   5篇
  2022年   3篇
  2021年   9篇
  2020年   1篇
  2019年   1篇
  2018年   5篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   3篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1983年   1篇
  1970年   1篇
  1965年   3篇
  1964年   2篇
  1963年   1篇
  1960年   3篇
  1958年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
1.
Summary The effects were studied of hydrogen-ion concentration, calcium and manganese supply on the yield of lucerne in both agar and water culture. One agar experiment allowed the effects of two light intensities and two temperatures, on these factors, to be investigated.The toxicity of pH 4 was found to vary, and calcium and nitrogen levels, culture method and climatic conditions were considered contributory factors. The high manganese supply was also found to vary in its toxicity, the most adverse effects being at pH 6, a low calcium supply and a high light intensity. Where the toxicity was most severe the usual orange-brown spotting symptoms were replaced by a chlorosis. Some chemical analyses of the manganese contents of the plants grown under these conditions are reported.The data given here are taken from the thesis submitted by C. D. Sutton for the degree of Ph. D. of the University of Nottingham.  相似文献   
2.
Summary The maximum radius of the rosette, defined as the distance from the centre shoot to the base of the leaf furthest from it, is highly correlated with yield of dry matter (r=0.98 to 0.93) over the earlier vegetative period, but becomes progressively less sensitive on approaching inflorescence.The maximum radius was tested for fidelity as a rapid index of dry-matter yield using data from other factorial eperiments. It proved satisfactory in nutrient experiments for the comparison of treatment means prior to harvesting, provided that correlation at harvest was greater thanr=0.85.The limitations of the index are discussed.  相似文献   
3.
Although mechanisms involved in response of Saccharomyces cerevisiae to osmotic challenge are well described for low and sudden stresses, little is known about how cells respond to a gradual increase of the osmotic pressure (reduced water activity; aw) over several generations as it could encounter during drying in nature or in food processes. Using glycerol as a stressor, we propagated S. cerevisiae through a ramp of the osmotic pressure (up to high molar concentrations to achieve testing-to-destruction) at the rate of 1.5 MPa day-1 from 1.38 to 58.5 MPa (0.990–0.635 aw). Cultivability (measured at 1.38 MPa and at the harvest osmotic pressure) and glucose consumption compared with the corresponding sudden stress showed that yeasts were able to grow until about 10.5 MPa (0.926 aw) and to survive until about 58.5 MPa, whereas glucose consumption occurred until 13.5 MPa (about 0.915 aw). Nevertheless, the ramp conferred an advantage since yeasts harvested at 10.5 and 34.5 MPa (0.778 aw) showed a greater cultivability than glycerol-shocked cells after a subsequent shock at 200 MPa (0.234 aw) for 2 days. FTIR analysis revealed structural changes in wall and proteins in the range 1.38–10.5 MPa, which would be likely to be involved in the resistance at extreme osmotic pressure.  相似文献   
4.
There is a pressing need to understand and optimize biological control so as to avoid over‐reliance on the synthetic chemical pesticides that can damage environmental and human health. This study focused on interactions between a novel biocontrol‐strain, Bacillus sp. JC12GB43, and potato‐pathogenic Phytophthora and Fusarium species. In assays carried out in vitro and on the potato tuber, the bacterium was capable of near‐complete inhibition of pathogens. This Bacillus was sufficiently xerotolerant (water activity limit for growth = 0.928) to out‐perform Phytophthora infestans (~0.960) and challenge Fusarium coeruleum (~0.847) and Fusarium sambucinum (~0.860) towards the lower limits of their growth windows. Under some conditions, however, strain JC12GB43 stimulated proliferation of the pathogens: for instance, Fusarium coeruleum growth‐rate was increased under chaotropic conditions in vitro (132 mM urea) by >100% and on tubers (2‐M glycerol) by up to 570%. Culture‐based assays involving macromolecule‐stabilizing (kosmotropic) compatible solutes provided proof‐of‐principle that the Bacillus may provide kosmotropic metabolites to the plant pathogen under conditions that destabilize macromolecular systems of the fungal cell. Whilst unprecedented, this finding is consistent with earlier reports that fungi can utilize metabolites derived from bacterial cells. Unless the antimicrobial activities of candidate biocontrol strains are assayed over a full range of field‐relevant parameters, biocontrol agents may promote plant pathogen infections and thereby reduce crop yields. These findings indicate that biocontrol activity, therefore, ought to be regarded as a mode‐of‐behaviour (dependent on prevailing conditions) rather than an inherent property of a bacterial strain.  相似文献   
5.
6.
The biosphere of planet Earth is delineated by physico-chemical conditions that are too harsh for, or inconsistent with, life processes and maintenance of the structure and function of biomolecules. To define the window of life on Earth (and perhaps gain insights into the limits that life could tolerate elsewhere), and hence understand some of the most unusual biological activities that operate at such extremes, it is necessary to understand the causes and cellular basis of systems failure beyond these windows. Because water plays such a central role in biomolecules and bioprocesses, its availability, properties and behaviour are among the key life-limiting parameters. Saline waters dominate the Earth, with the oceans holding 96.5% of the planet's water. Saline groundwater, inland seas or saltwater lakes hold another 1%, a quantity that exceeds the world's available freshwater. About one quarter of Earth's land mass is underlain by salt, often more than 100 m thick. Evaporite deposits contain hypersaline waters within and between their salt crystals, and even contain large subterranean salt lakes, and therefore represent significant microbial habitats. Salts have a major impact on the nature and extent of the biosphere, because solutes radically influence water's availability (water activity) and exert other activities that also affect biological systems (e.g. ionic, kosmotropic, chaotropic and those that affect cell turgor), and as a consequence can be major stressors of cellular systems. Despite the stressor effects of salts, hypersaline environments can be heavily populated with salt-tolerant or -dependent microbes, the halophiles. The most common salt in hypersaline environments is NaCl, but many evaporite deposits and brines are also rich in other salts, including MgCl(2) (several hundred million tonnes of bischofite, MgCl(2).6H(2)O, occur in one formation alone). Magnesium (Mg) is the third most abundant element dissolved in seawater and is ubiquitous in the Earth's crust, and throughout the Solar System, where it exists in association with a variety of anions. Magnesium chloride is exceptionally soluble in water, so can achieve high concentrations (> 5 M) in brines. However, while NaCl-dominated hypersaline environments are habitats for a rich variety of salt-adapted microbes, there are contradictory indications of life in MgCl(2)-rich environments. In this work, we have sought to obtain new insights into how MgCl(2) affects cellular systems, to assess whether MgCl(2) can determine the window of life, and, if so, to derive a value for this window. We have dissected two relevant cellular stress-related activities of MgCl(2) solutions, namely water activity reduction and chaotropicity, and analysed signatures of life at different concentrations of MgCl(2) in a natural environment, namely the 0.05-5.05 M MgCl(2) gradient of the seawater : hypersaline brine interface of Discovery Basin - a large, stable brine lake almost saturated with MgCl(2), located on the Mediterranean Sea floor. We document here the exceptional chaotropicity of MgCl(2), and show that this property, rather than water activity reduction, inhibits life by denaturing biological macromolecules. In vitro, a test enzyme was totally inhibited by MgCl(2) at concentrations below 1 M; and culture medium with MgCl(2) concentrations above 1.26 M inhibited the growth of microbes in samples taken from all parts of the Discovery interface. Although DNA and rRNA from key microbial groups (sulfate reducers and methanogens) were detected along the entire MgCl(2) gradient of the seawater : Discovery brine interface, mRNA, a highly labile indicator of active microbes, was recovered only from the upper part of the chemocline at MgCl(2) concentrations of less than 2.3 M. We also show that the extreme chaotropicity of MgCl(2) at high concentrations not only denatures macromolecules, but also preserves the more stable ones: such indicator molecules, hitherto regarded as evidence of life, may thus be misleading signatures in chaotropic environments. Thus, the chaotropicity of MgCl(2) would appear to be a window-of-life-determining parameter, and the results obtained here suggest that the upper MgCl(2) concentration for life, in the absence of compensating (e.g. kosmotropic) solutes, is about 2.3 M.  相似文献   
7.
Low water availability is the most ubiquitous cause of stress for terrestrial plants, animals and microorganisms, and has a major impact on ecosystem function and agricultural productivity. Studies of water stress have largely focused on conditions that affect cell turgor, i.e. induce osmotic stress. We show that chaotropic solutes that do not affect turgor reduce water activity, perturb macromolecule-water interactions and thereby destabilize cellular macromolecules, inhibit growth, and are powerful mediators of water stress in a typical soil bacterium, Pseudomonas putida. Chaotropic solute-induced water stress resulted mostly in the upregulation of proteins involved in stabilization of biological macromolecules and membrane structure. Many environmental pollutants and agricultural products are chaotropic chemicals and thus constitute a previously unrecognised but common form of biological stress in water bodies and soils.  相似文献   
8.
The deletion of the gene encoding the glycerol facilitator Fps1p was associated with an altered plasma membrane lipid composition in Saccharomyces cerevisiae. The S. cerevisiae fps1delta strain respectively contained 18 and 26% less ergosterol than the wild-type strain, at the whole-cell level and at the plasma membrane level. Other mutants with deficiencies in glycerol metabolism were studied to investigate any possible link between membrane ergosterol content and intracellular glycerol accumulation. In these mutants a modification in intracellular glycerol concentration, or in intra- to extracellular glycerol ratio was accompanied by a reduction in plasma membrane ergosterol content. However, there was no direct correlation between ergosterol content and intracellular glycerol concentration. Lipid composition influences the membrane permeability for solutes during adaptation of yeast cells to osmotic stress. In this study, ergosterol supplementation was shown to partially suppress the hypo-osmotic sensitivity phenotype of the fps1delta strain, leading to more efficient glycerol efflux, and improved survival. The erg-1 disruption mutant, which is unable to synthesise ergosterol, survived and recovered from the hypo-osmotic shock more successfully when the concentration of exogenously supplied ergosterol was increased. The results obtained suggest that a higher ergosterol content facilitates the flux of glycerol across the plasma membrane of S. cerevisiae cells.  相似文献   
9.
Environments that are hostile to life are characterized by reduced microbial activity which results in poor soil‐ and plant‐health, low biomass and biodiversity, and feeble ecosystem development. Whereas the functional biosphere may primarily be constrained by water activity (aw) the mechanism(s) by which this occurs have not been fully elucidated. Remarkably we found that, for diverse species of xerophilic fungi at aw values of ≤ 0.72, water activity per se did not limit cellular function. We provide evidence that chaotropic activity determined their biotic window, and obtained mycelial growth at water activities as low as 0.647 (below that recorded for any microbial species) by addition of compounds that reduced the net chaotropicity. Unexpectedly we found that some fungi grew optimally under chaotropic conditions, providing evidence for a previously uncharacterized class of extremophilic microbes. Further studies to elucidate the way in which solute activities interact to determine the limits of life may lead to enhanced biotechnological processes, and increased productivity of agricultural and natural ecosystems in arid and semiarid regions.  相似文献   
10.
Summary The effect has been studied of varying levels of copper supply on the copper, iron and manganese contents of plants ofT. subterraneum in which the growth rate had been altered by variation in nitrate supply and light intensity.It has been found that the copper content of the plants is related logarithmically to the level of copper in the nutrient and is not affected by nitrate supply or intensity of illumination. Within the limits set, there is no change in the copper content of the tops with time, but the concentration in the roots shows a progressive increase, particularly at the higher levels of copper supply. Between one-fifth and one-quarter of the copper present in the roots is in the free space.The concentration of both iron and manganese decline with increase in copper supply. Although this is largely an indirect result arising from increased growth at the higher copper supply, a considerable distortion of the Fe/Mn ratio can occur. In the roots, however, there appears to be a direct restrictive effect of the higher copper supply on manganese concentration, over and above the indirect effect of growth dilution.The data on which this paper is based are mainly from the these submitted by M. G. Yates, P. E. Cansfield and J. T. Saul for the degree of Ph.D. of the University of Nottingham.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号