首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   4篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2017年   1篇
  2016年   3篇
  2015年   7篇
  2014年   5篇
  2013年   5篇
  2012年   7篇
  2011年   3篇
  2008年   2篇
  2007年   5篇
  2006年   1篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2000年   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有64条查询结果,搜索用时 156 毫秒
1.
The axolotl, Ambystoma mexicanum, is used extensively for research in developmental biology, particularly for its ability to regenerate and restore lost organs, including in the nervous system, to full functionality. Regeneration in mammals typically depends on the healing process and scar formation with limited replacement of lost tissue. Other organisms, such as spiny mice (Acomys cahirinus), salamanders, and zebrafish, are able to regenerate some damaged body components. Blastema is a tissue that is formed after tissue injury in such organisms and is composed of progenitor cells or dedifferentiated cells that differentiate into various cell types during regeneration. Thus, identifying the molecules responsible for initiation of blastema formation is an important aspect for understanding regeneration. Introns, a major source of noncoding RNAs (ncRNAs), have characteristic sizes in the axolotl, particularly in genes associated with development. These ncRNAs, particularly microRNAs (miRNAs), exhibit dynamic regulation during regeneration. These miRNAs play an essential role in timing and control of gene expression to order and organize processes necessary for blastema creation. Master keys or molecules that underlie the remarkable regenerative abilities of the axolotl remain to be fully explored and exploited. Further and ongoing research on regeneration promises new knowledge that may allow improved repair and renewal of human tissues.  相似文献   
2.
By the beginning of 2021, the battle against coronavirus disease 2019 (COVID-19) remains ongoing. Investigating the adaptive immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19, in patients who have recovered from this disease could contribute to our understanding of the natural host immune response. We enrolled 38 participants in this study. 7 healthy participants and 31 COVID-19 patients who had recovered from COVID-19 and categorized them into 3 groups according to their previous clinical presentations: 10 moderate, 9 mild, and 12 asymptomatic. Flow cytometry analysis of peripheral lymphocyte counts in recovered patients showed significantly increased levels of CD4+ T cells in patients with a history of mild and moderate COVID-19 symptoms compared with those healthy individuals (p < 0.05 and p < 0.0001 respectively). whereas no significant difference was observed in the CD8+ T cell percentage in COVID-19-recovered patients compared with healthy individuals. Our study demonstrated that antibodies against the SARS-CoV-2 spike protein (anti-S) IgG antibody production could be observed in all recovered COVID-19 patients, regardless of whether they were asymptomatic (p < 0.05)or presented with mild (p < 0.0001) or moderate symptoms (p < 0.01). Anti-S IgG antibodies could be detected in participants up to 90 days post-infection. In conclusion, the lymphocyte levels in recovered patients were associated with the clinical presentation of the disease, and further analysis is required to investigate relationships between different clinical presentations and lymphocyte activation and function.  相似文献   
3.

Background

Implantable Cardioverter-defibrillators (ICD) reduce mortality in survivors of cardiac arrest (CA). We investigated the predictors of mortality after ICD implantation in survivors of CA.

Methods

Retrospective review of clinical records and social security death index of all patients who received an ICD in a preexisting database of survivors of CA at the University of Pittsburgh Medical Center was performed. Multivariate analyses using the Cox proportional hazard model were performed with backward elimination to identify independent predictors of the time to death, and Kaplan-Meier curves were plotted.

Results

Eighty patients (64 men) with a mean age of 64.4±12.5 years were followed for 4.7±2.3 years after ICD implantation. Survival rates were 93.8%, 65% and 50% at 1, 5, and 10 years, respectively. Independent predictors of time to death were determined to include age (hazard ratio (HR) = 1.91 per 10-year increase, p = 0.003), serum creatinine ≥ 1.3 mg/dL (HR = 2.56, p = 0.004), and QRS width >120 ms (HR = 5.14, p = 0.012).

Conclusions

In this sample of ICD recipients secondary to CA, older age, elevated serum creatinine, and wider QRS duration were independent predictors of mortality. The presence of more than one risk factor in the same patient was associated with higher mortality rates. Whether interventions such as biventricular pacing can offset this increase risk of death warrants further investigation.  相似文献   
4.
ABSTRACT: BACKGROUND: Stroke is a potential complication of acute coronary syndrome (ACS). The aim of this study was to identify the prevalence, risk factors predisposing to stroke, in-hospital and 1-year mortality among patients presenting with ACS in the Middle East. METHODS: For a period of 9 months in 2008 to 2009, 7,930 consecutive ACS patients were enrolled from 65 hospitals in 6 Middle East countries. RESULTS: The prevalence of in-hospital stroke following ACS was 0.70%. Most cases were ST segment elevation MI-related (STEMI) and ischemic stroke in nature. Patients with in-hospital stroke were 5 years older than patients without stroke and were more likely to have hypertension (66% vs. 47.6%, P = 0.001). There were no differences between the two groups in regards to gender, other cardiovascular risk factors, or prior cardiovascular disease. Patients with stroke were more likely to present with atypical symptoms, advanced Killip class and less likely to be treated with evidence-based therapies. Independent predictors of stroke were hypertension, advanced killip class, ACS type --STEMI and cardiogenic shock. Stroke was associated with increased risk of in-hospital (39.3% vs. 4.3%) and one-year mortality (52% vs. 12.3%). CONCLUSION: There is low incidence of in-hospital stroke in Middle-Eastern patients presenting with ACS but with very high in-hospital and one-year mortality rates. Stroke patients were less likely to be appropriately treated with evidence-based therapy. Future work should be focused on reducing the risk and improving the outcome of this devastating complication.  相似文献   
5.
The herbicide-inducible, soluble cytochrome P450s CYP105A1 and CYP105B1 and their adjacent ferredoxins, Fd1 and Fd2, of Streptomyces griseolus were expressed in Escherichia coli to high levels. Conditions for high-level expression of active enzyme able to catalyze hydroxylation have been developed. Analysis of the expression levels of the P450 proteins in several different E. coli expression hosts identified E. coli BL21 Star(DE3)pLysS as the optimal host cell to express CYP105B1 as judged by CO difference spectra. Examination of the codons used in the CYP1051A1 sequence indicated that it contains a number of codons corresponding to rare E. coli tRNA species. The level of its expression was improved in the modified forms of E. coli BL21(DE3), which contain extra copies of rare codon E. coli tRNA genes. The activity of correctly folded cytochrome P450s was further enhanced by cloning a ferredoxin reductase from Streptomyces coelicolor downstream of CYP105A1 and CYP105B1 and their adjacent ferredoxins. Expression of CYP105A1 and CYP105B1 was also achieved in Streptomyces lividans 1326 by cloning the P450 genes and their ferredoxins into the expression vector pBW160. S. lividans 1326 cells containing CYP105A1 or CYP105B1 were able efficiently to dealkylate 7-ethoxycoumarin.  相似文献   
6.
Until 2012, the genus Edwardsiella was composed by three species Edwardsiella tarda, Edwardsiella hoshinae and Edwardsiella ictaluri. In 2013, Edwardsiella piscicida, compiling fish pathogenic strains previously identified as E. tarda was described, and more recently a new species isolated from diseased eel was reported, namely Edwardsiella anguillarum.The incorporation of these species into the genus makes necessary a revision of the taxonomic position of the isolates previously identified as E. tarda. Using AFLP technique, MLSA studies and in silico DNA–DNA hybridization, 46 of 49 E. tarda isolates were re-assigned as E. piscicida and 2 as E. anguillarum, whereas it was confirmed previous classification of the Edwardsiella types and reference strains used. The study of the taxonomic resolution of the genes 16S rRNA, adk, atpD, dnaJ, glnA, hsp60, tuf as well as the possible combinations among housekeeping genes, showed that the gene dnaJ was the more resolutive. In conclusion, the use of molecular techniques is necessary to accurately identify Edwardsiella isolates, especially when differentiating new species from E. tarda.  相似文献   
7.
8.
Identifying proteome changes of honey bee embryogenesis is of prime importance for unraveling the molecular mechanisms that they underlie. However, many proteomic changes during the embryonic period are not well characterized. We analyzed the proteomic alterations over the complete time course of honey bee worker embryogenesis at 24, 48, and 72 h of age, using mass spectrometry-based proteomics, label-free quantitation, and bioinformatics. Of the 1460 proteins identified the embryo of all three ages, the core proteome (proteins shared by the embryos of all three ages, accounting for 40%) was mainly involved in protein synthesis, metabolic energy, development, and molecular transporter, which indicates their centrality in driving embryogenesis. However, embryos at different developmental stages have their own specific proteome and pathway signatures to coordinate and modulate developmental events. The young embryos (<24 h) stronger expression of proteins related to nutrition storage and nucleic acid metabolism may correlate with the cell proliferation occurring at this stage. The middle aged embryos (24–48 h) enhanced expression of proteins associated with cell cycle control, transporters, antioxidant activity, and the cytoskeleton suggest their roles to support rudimentary organogenesis. Among these proteins, the biological pathways of aminoacyl-tRNA biosynthesis, β-alanine metabolism, and protein export are intensively activated in the embryos of middle age. The old embryos (48–72 h) elevated expression of proteins implicated in fatty acid metabolism and morphogenesis indicate their functionality for the formation and development of organs and dorsal closure, in which the biological pathways of fatty acid metabolism and RNA transport are highly activated. These findings add novel understanding to the molecular details of honey bee embryogenesis, in which the programmed activation of the proteome matches with the physiological transition observed during embryogenesis. The identified biological pathways and key node proteins allow for further functional analysis and genetic manipulation for both the honey bee embryos and other eusocial insects.Embryogenesis is an important period during which the body plan of adult honey bees (Apis mellifera L.) is formed. This life stage, lasting 72 h, occurs during the egg laid by the queen before bees hatch as young larva. Worker bees are derived from fertilized eggs and develop through four distinct stages until the imago eventually emerges: egg, larva, pupa, and emerging adult (14). The worker is the dominate caste and engages in almost all aspects of social life: taking care of larvae, cleaning the hive, guarding the nest, and foraging for nectar and pollen for the colony. Understanding the developmental mechanism of embryogenesis of honey bee workers at the protein level is conducive to gaining a new insight into honey bee embryology, but information about the mechanisms of honey bee embryos at molecular level is still very limited.The embryo is recognized as an ideal model for genetic modification as compared with larva, pupa, and emerged adults (5). The environment for embryonic development requires a constant temperature of 34 °C and 80% relative humidity, which can easily be simulated under laboratory conditions. In contrast, rearing larvae or pupae is more challenging because they demand a specific temperature, humidity, and nutrition in the colony environment (1, 5). Furthermore, the honey bee has adapted an evolutionary strategy for better colony survival that makes it difficult to rear experimentally modified larvae and pupae within the colony (6, 7), nurse bees use acute judgment to identify and remove abnormal eggs or larvae (8). This adaptation makes raising experimentally treated bees, such as genetically manipulated eggs and larvae, very difficult in the honey bee colony (911). Because of totipotency and multiple differentiation potential, modified eggs could be hatched out normally and eventually some of them could be induced to morphologically and physiologically normal adult queens (12), increasing their usefulness as a model system. Moreover, the chorion of honey bee egg is more suitable for puncturing a hole for microinjection as it is much thinner than that of the fruit fly (Drosophila melonogastero) or the silk worm (Bombyx mori) (0.1–0.25 μm for honey bees compared with ∼17 μm for silk worm) (13, 14). These superiorities are quite promising for in vivo transgenic research on honey bee embryos.Until now, a number of genetic manipulations of the honey bee embryo have been developed. For example, embryonic cells in the pre-gastrula stage that have been transplanted with nuclear materials have developed into chimeric honey bee larvae (15). RNA interference (RNAi) has been used for honey bee embryos in vivo to characterize the functioning of specific genes (16) and for genetic effects on morphological differentiation (17, 18). Moreover, the cultivation of short-term (1921), long-term (22), and immortalized cell lines (23), and the expression of non-Apis genes in cultured embryonic cells (24) have opened up a new era for genetic manipulation of honey bee embryos.Like Drosophila, Apis is a long germ insect in which segmentation occurs across the whole body (25). To date, although several studies have examined morphological change (2, 26, 27) and gene expression (25, 28, 29) during the period of embryogenesis in the honey bee, only a few works report on the preliminary results of the unraveling molecular underpinnings of worker (30) and drone (31) embryogenesis at the proteomic level, identifying only 107 proteins. MS-based proteomics is the primary technology that enables a system-wide view of proteomes and their changes. The development of MS with high resolution, high mass accuracy, and high sequencing speed now allows routine identification and quantification of proteins in a comprehensive and unbiased manner in biological samples with high confidence (32). These technological advances in LC-MS now allow the study of protein expression on a system-wide level (33). Therefore, an in-depth characterization of the proteome changes during the honey bee embryogenesis will provide greater understanding of the molecular mechanisms that underlie the process of embryogenesis in honey bee workers, and offers new insights into the embryology of other social insects.  相似文献   
9.
Middle East respiratory syndrome coronavirus(MERS-Co V) has emerged in the Arabian Gulf region, with its epicentre in Saudi Arabia, the host of the ‘Hajj' which is the world's the largest mass gathering. Transmission of MERS-Co V at such an event could lead to its rapid worldwide dissemination. Therefore, we studied the frequency of viruses causing influenza-like illnesses(ILI) among participants in a randomised controlled trial at the Hajj 2013. We recruited 1038 pilgrims from Saudi Arabia, Australia and Qatar during the first day of Hajj and followed them closely for four days. A nasal swab was collected from each pilgrim who developed ILI. Respiratory viruses were detected using multiplex RT-PCR. ILI occurred in 112/1038(11%) pilgrims. Their mean age was 35 years, 49(44%) were male and 35(31%) had received the influenza vaccine pre-Hajj. Forty two(38%) pilgrims had laboratory-confirmed viral infections; 28(25%) rhinovirus, 5(4%) influenza A, 2(2%) adenovirus, 2(2%) human coronavirus OC43/229 E, 2(2%) parainfluenza virus 3, 1(1%) parainfluenza virus 1, and 2(2%) dual infections. No MERS-Co V was detected in any sample. Rhinovirus was the commonest cause of ILI among Hajj pilgrims in 2013. Infection control and appropriate vaccination are necessary to prevent transmission of respiratory viruses at Hajj and other mass gatherings.  相似文献   
10.
The substrate range of 2,4-dinitrotoluene (DNT) dioxygenase was investigated by measuring substrate-dependent O2 uptake and maximum growth (expressed in A600) on substrate-containing minimal medium. The control for each strain had no added particular substrate. The following aromatic compounds: catechol, α-naphthalene acetic acid, β-dimethylaminobenzaldehyde, 3,4-dinitrosalicylic acid, p-nitrophenol, naphthanol, o-anisic acid, salicylic acid, toluene, and benzoic acid, were tried as possible substrates. Considering all substrates used, only p-nitrophenol showed zero oxygen uptake rate and zero growth. This indicates that it was rather unlikely that p-nitrophenol is a substrate analog for 2,4-DNT. Catechol was clearly used as a sole carbon source by both wild-type Escherichia. coli (JM103) and the dnt transformant (JS39). Using α-naphthalene acetic acid and β-dimethylaminobenzaldehyde as substrates resulted in DNT dioxygenase oxygen uptake rates of 11.8 and 14?μM/hr/mg protein, respectively. However, using both compounds as a carbon source, JS39 had twice the growth rate of E. coli JM103. For the remaining six substrates tested (3, 4-dinitrosalicylic acid, p-nitrophenol, o-anisic acid, salicylic acid, toluene, and benzoic acid), there appeared to be growth advantages for JS39 (even though the growth in the presence of substrate was less than the controls) suggesting a situation similar to that described for α-naphthalene and β-dimethylaminobenzaldehyde above. Combining results from our assay with respirometry and growth-based experiments will allow a better understanding of the biochemical consequences of these interactions. These results suggest that DNT dioxygenase gene, dntA carried by JS39, and those potential genes for substrates-degraded enzyme(s) system could have a common root.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号