首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   9篇
  2023年   1篇
  2021年   1篇
  2019年   6篇
  2018年   5篇
  2017年   5篇
  2016年   4篇
  2015年   3篇
  2014年   7篇
  2013年   8篇
  2012年   9篇
  2011年   10篇
  2010年   8篇
  2009年   7篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   5篇
  2004年   1篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
1.
2.
Insecticidal and antifeeding activities against Plutella xylostella were observed using whole‐plant‐derived Perilla frutescens material. The active ingredient in P. frutescens was identified by spectroscopic analysis as the sesquiterpenoid α‐farnesene, which showed insecticidal activity against third‐instar larva of P. xylostella in a leaf‐dipping bioassay based on 24‐h LD50 values (LD50 = 53.7 ppm). The feeding inhibition rate of α‐farnesene was 82.98% against P. xylostella at 10 ppm, and the antifeeding responses were determined using an oscilloscope to detect electrophysiological responses. The electrophysiological responses of the medial styloconic sensillum (MSS) were approximately 7‐fold more sensitive at 100 ppm than those of the lateral styloconic sensillum (LSS). These results suggest that the insecticidal and antifeeding effect of α‐farnesene, which is a P. frutescens‐derived material, can be used as a potential control agent for P. xylostella.  相似文献   
3.
The soybean pod borer, Maruca vitrata is one of the key insect pests of tropical legumes. It damages tender leaf axils, flower buds, flowers and pods by webbing and boring clusters of flowers and pods. In this study, we investigated the survival and life table parameters of M. vitrata on several leguminous crops; soybean (cvs. Daewon, Poongsannamool and Socheongja), azuki bean (cv. Hongeon), mung bean (cv. Sanpo), and cowpea (cv. Jangchae), compared to artificial diet to assess the antibiosis resistance to M. vitrata. The life‐variables of M. vitrata were significantly affected by the tested legume cultivars. None of the larvae fed cowpea cultivar Jangchae survived. The azuki bean cultivar Hongeon and mung bean cultivar Sanpo were found susceptible to M. vitrata, whereas cowpea cultivar Jangchae and soybean cultivar Daewon showed antibiosis resistance to M. vitrata. Further studies should examine the chemicals associated with leguminous crop cultivars and its mechanism to develop a control method against M. vitrata.  相似文献   
4.
5.
南方4种草本植物对铝胁迫生理响应的研究   总被引:26,自引:0,他引:26       下载免费PDF全文
 不同的植物对铝胁迫的生理响应不同, 因而对铝毒的耐性也不相同。设置5种铝浓度,进行砂培法处理,研究了4种我国南方红壤广泛分布的草本植物——牵牛(Pharbitis nil)、望江南(Cassia occidentlis)、光头稗(Echinochloa colonum)和合萌(Aeschynomene indica)的种子萌发、光合色素、脯氨酸含量、丙二醛(MDA)含量、可溶性糖(SS)含量、质膜透性(MP)、过氧化氢酶 (CAT) 活性以及过氧化物酶 (POD)活性的变化。结果表明铝对4种植物的生理特性都有明显的影响。4种植物的种子在10 000 mg·L-1 Al3+处理条件下都不能萌发。2 000 mg·L-1 Al3+处理都不利于4种植物的生长,与对照相比,2 000 mg·L-1 Al3+处理时4种草本植物叶绿素和叶绿素总含量显著降低(p<0.05);MDA含量和MP显著增加(p<0.05);脯氨酸含量极显著增加(p<0.01);POD和CAT活性极显著降低(p<0.01)。中低铝(80和400 mg·L-1)处理时,牵牛和合萌与对照相比,MP和MDA含量降低,POD和CAT活性升高;望江南的反应与牵牛和合萌的反应相反;光头稗在80 mg·L-1 Al3+处理时,与牵牛和合萌的变化一致,在400 mg·L-1 Al3+处理时,则相反。植物在中低铝处理条件下,通过维持较高的POD和CAT活性和脯氨酸、叶绿素含量,较低的MP和MDA含量来增加其对铝的耐性。  相似文献   
6.

Purpose

To evaluate the effects of prostatic anatomical factors on male lower urinary tract symptoms (LUTS) and the peak flow rate (Qmax) in patients with small prostate volume (PV).

Materials and Methods

Records were obtained from a prospectively maintained database of first-visit men with LUTS. Patients whose total PV (TPV) was greater than 30 mL were excluded; 444 patients were enrolled in the study. The TPV, transitional zone volume (TZV), transitional zone index (TZI), intravesical prostatic protrusion (IPP), and prostatic urethral angle (PUA) were measured by transrectal ultrasonography. LUTS were evaluated using the International Prostate Symptom Score (IPSS) and the Overactive Bladder Symptom Score (OABSS) questionnaires. Uroflowmetric measurements were also made.

Results

PUA (r = 0.269, P<0.001), TZV (r = 0.160, P<0.001), and TZI (r = 0.109, P = 0.022) significantly correlated with the IPSS. Qmax (r = −0.334, P<0.001) and OABSS (r = 0.211, P<0.001) correlated only with PUA. In a multivariate regression analysis, PUA and age were independently associated with IPSS, OABSS, and Qmax. For IPSS of 20 or greater, the area under the ROC curve (AUC) of PUA was 0.667 and the cut-off value was 43.7°. When Qmax was 10 mL/s or less, the AUC of PUA was 0.664 and the cut-off value was 43.5°.

Conclusions

PUA has a significant association with symptom severity and Qmax among prostatic anatomical factors analyzed in men with LUTS and small PV. PUA should be considered as an important clinical factor in male LUTS management. Furthermore, the impact of PUA on response to medical treatment and disease progression needs to be investigated.  相似文献   
7.
8.
9.
Glucose-6-phosphatase (G6Pase) is a multiple protein complex in the endoplasmic reticulum (ER) that includes a mechanism (known as T3) for glucose exit from the ER to the cytosol. The molecular identity of T3 is not known. T3 has been shown to be functional in the absence of GLUT2, indicating that it is not GLUT2. Here we found a 55-kDa protein in high-density microsomal fraction (HDM) of rat hepatocytes that is recognized by polyclonal GLUT2 antibody raised against the GLUT2 C-terminal 14-amino-acid-sequence peptide. HDM contained calnexin but no integrin-beta1 or Na/K ATPase in Western blotting. Significant GLUT2 immunoreactivity was colocalized with colligin, an ER marker, in confocal microscopy. Furthermore, the 55-kDa protein in HDM was labeled with a covalently reactive, impermeable glucose transporter substrate, 1,3-bis-(3-deoxy-D-glucopyranose-3-yloxy)-2-propyl 4-benzoyl-benzoate (B3GL) when hepatocyte homogenates, but not intact cells, were labeled. In addition glucose efflux from HDM vesicles was sensitive to B3GL treatment in a dose-dependent manner. Based on these findings, we suggest that T3 may be a novel facilitative glucose transporter that is highly homologous to GLUT2 in the C-terminal sequence, thus cross-reacting with the GLUT2 antibody. The finding will be useful in molecular identification and cloning of T3.  相似文献   
10.
Insulin-responsive aminopeptidase (IRAP) colocalizes with glucose transporter type 4 (GLUT4) in adipocytes and is recruited to the plasma membrane in response to insulin. Microinjection of peptides corresponding to the IRAP cytoplasmic domain sequences causes GLUT4 recruitment in adipocytes. Inhibitors of protein kinase C-zeta (PKC-zeta) abolish the insulin-induced GLUT4 recruitment in rat adipocytes. These findings suggest an interesting possibility that PKC-zeta may phosphorylate IRAP, playing a key role in GLUT4/IRAP recruitment. To test this possibility, here we studied the (32)P incorporation into IRAP catalyzed by PKC-zeta in insulin-stimulated cells. There was a small but significant (32)P incorporation into IRAP in rat adipocytes, which was partly abolished upon addition of a PKC-zeta pseudosubstrate, suggesting that PKC-zeta may be responsible in part for the IRAP phosphorylation in adipocytes. PKC-zeta also catalyzed the incorporation of (32)P not only into IRAP in GLUT4 vesicles isolated from rat adipocytes but also into the IRAP cytoplasmic domain inserts in glutathione S-transferase-fusion proteins, demonstrating direct IRAP phosphorylation by PKC-zeta. Reversed-phase HPLC, matrix-assisted laser desorption ionization mass spectrometry, and radiosequencing of the tryptic digests of the (32)P-labeled IRAP fusion proteins identified Ser-80 and Ser-91 as major phosphorylation sites. In GLUT4 vesicles, the (32)P incorporation into IRAP was exclusively localized at a 6.9-kDa tryptic fragment identified as IRAP(76-138) and the (32)P labeling at Ser-80 accounted for 80-90% of the total IRAP labeling, suggesting that Ser-80 is the major phosphorylation site in intact IRAP. These findings are consistent with the possibility that the IRAP cytoplasmic domain phosphorylation by PKC-zeta plays a key role in insulin-induced IRAP or GLUT4 recruitment in adipocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号