首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   880404篇
  免费   84450篇
  国内免费   160篇
  2018年   10061篇
  2017年   9465篇
  2016年   13299篇
  2015年   17370篇
  2014年   20026篇
  2013年   28559篇
  2012年   32591篇
  2011年   32994篇
  2010年   22236篇
  2009年   19843篇
  2008年   29096篇
  2007年   30002篇
  2006年   27960篇
  2005年   26759篇
  2004年   26272篇
  2003年   25168篇
  2002年   24277篇
  2001年   35971篇
  2000年   35417篇
  1999年   28509篇
  1998年   10388篇
  1997年   10332篇
  1996年   9896篇
  1995年   9458篇
  1994年   9113篇
  1993年   9076篇
  1992年   23112篇
  1991年   22662篇
  1990年   22037篇
  1989年   21402篇
  1988年   19666篇
  1987年   18811篇
  1986年   17521篇
  1985年   17459篇
  1984年   14396篇
  1983年   12562篇
  1982年   9563篇
  1981年   8674篇
  1980年   8021篇
  1979年   13356篇
  1978年   10524篇
  1977年   9486篇
  1976年   9081篇
  1975年   10131篇
  1974年   10815篇
  1973年   10677篇
  1972年   9712篇
  1971年   8723篇
  1970年   7608篇
  1969年   7470篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Vibrio cholerae is autochthonous to various aquatic niches and is the etiological agent of the life-threatening diarrheal disease cholera. The persistence of V. cholerae in natural habitats is a crucial factor in the epidemiology of cholera. In contrast to the well-studied V. cholerae-chitin connection, scarce information is available about the factors employed by the bacteria for the interaction with collagens. Collagens might serve as biologically relevant substrates, because they are the most abundant protein constituents of metazoan tissues and V. cholerae has been identified in association with invertebrate and vertebrate marine animals, as well as in a benthic zone of the ocean where organic matter, including collagens, accumulates. Here, we describe the characterization of the V. cholerae putative collagenase, VchC, encoded by open reading frame VC1650 and belonging to the subfamily M9A peptidases. Our studies demonstrate that VchC is an extracellular collagenase degrading native type I collagen of fish and mammalian origin. Alteration of the predicted catalytic residues coordinating zinc ions completely abolished the protein enzymatic activity but did not affect the translocation of the protease by the type II secretion pathway into the extracellular milieu. We also show that the protease undergoes a maturation process with the aid of a secreted factor(s). Finally, we propose that V. cholerae is a collagenovorous bacterium, as it is able to utilize collagen as a sole nutrient source. This study initiates new lines of investigations aiming to uncover the structural and functional components of the V. cholerae collagen utilization program.  相似文献   
2.
Richard A. Gill 《Plant and Soil》2014,374(1-2):197-210

Background and aims

Drivers of ecosystem dynamics that are under human influence range from local, land-management decisions to global processes such as warming temperatures and N deposition. The goal of this study was to understand how multiple, potentially interacting factors influence net primary production, N mineralization, and water and soil CO2 fluxes.

Methods

Here I report on a three-year experiment that manipulated air temperature using ITEX passive warming cones and N deposition in a mountain meadow ecosystems that were historically grazed or protected from grazing.

Results

The strongest and most consistent effect was due to the legacy of grazing, with previously grazed sites having lower primary production, lower soil respiration rates, lower soil moisture, and lower soil C and N stocks than historically ungrazed sites. Warming increased soil respiration, but the effect was transient, and decreased over the 3-year study. Nitrogen addition increased primary production in the second and third year of the experiment but had no significant effect on soil respiration. The effect of historical grazing on primary production was approximately double the effect of N addition. Temperature and N deposition rarely interacted except for increasing N availability during the warm, wet growing season of 2004.

Conclusions

These findings indicate that the legacies of land use, with their influence on plant community composition and hydrologic processes, are locally more important than short-term step changes in temperature and nutrient availability.  相似文献   
3.

Aims

This study investigated Cu uptake and accumulation as well as physiological and biochemical changes in grapevines grown in soils containing excess Cu.

Methods

The grapevines were collected during two productive cycles from three vineyards with increasing concentrations of Cu in the soil and at various growth stages, before and after the application of Cu-based fungicides. The Cu concentrations in the grapevine organs and the macronutrients and biochemical parameters in the leaf blades were analyzed.

Results

At close to the flowering stage of the grapevines, the concentration and content of Cu in the leaves were increased. However, the Cu concentrations in the roots, stem, shoots and bunches did not correlate with the metal concentrations in the soil. The application of Cu-based fungicides to the leaves increased the Cu concentrations in the shoots, leaves and rachis; however, the effect of the fungicides on the Cu concentration in the berries was not significant. The biochemical analyses of the leaf blades demonstrated symptoms of oxidative stress that correlated with the Cu concentrations in soil.

Conclusions

The increased availability of Cu in soil had a slight effect on the levels and accumulation of Cu in mature grapevines during the productive season and did not alter the nutritional status of the plant. However, increased Cu concentrations were observed in the leaves. The evidence of oxidative stress in the leaves correlated with the increased levels of Cu in soil.  相似文献   
4.
Although oxidative stress has been previously described in plants exposed to uranium (U), some uncertainty remains about the role of glutathione and tocopherol availability in the different responsiveness of plants to photo-oxidative damage. Moreover, in most cases, little consideration is given to the role of water transport in shoot heavy metal accumulation. Here, we investigated the effect of uranyl nitrate exposure (50 μM) on PSII and parameters involved in water transport (leaf transpiration and aquaporin gene expression) of Arabidopsis wild type (WT) and mutant plants that are deficient in tocopherol (vte1: null α/γ-tocopherol and vte4: null α-tocopherol) and glutathione biosynthesis (high content: cad1.3 and low content: cad2.1). We show how U exposure induced photosynthetic inhibition that entailed an electron sink/source imbalance that caused PSII photoinhibition in the mutants. The WT was the only line where U did not damage PSII. The increase in energy thermal dissipation observed in all the plants exposed to U did not avoid photo-oxidative damage of mutants. The maintenance of control of glutathione and malondialdehyde contents probed to be target points for the overcoming of photoinhibition in the WT. The relationship between leaf U content and leaf transpiration confirmed the relevance of water transport in heavy metals partitioning and accumulation in leaves, with the consequent implication of susceptibility to oxidative stress.  相似文献   
5.
Opium poppy (Papaver somniferum) is one of the world’s oldest medicinal plants and remains the only commercial source for the narcotic analgesics morphine, codeine and semi-synthetic derivatives such as oxycodone and naltrexone. The plant also produces several other benzylisoquinoline alkaloids with potent pharmacological properties including the vasodilator papaverine, the cough suppressant and potential anticancer drug noscapine and the antimicrobial agent sanguinarine. Opium poppy has served as a model system to investigate the biosynthesis of benzylisoquinoline alkaloids in plants. The application of biochemical and functional genomics has resulted in a recent surge in the discovery of biosynthetic genes involved in the formation of major benzylisoquinoline alkaloids in opium poppy. The availability of extensive biochemical genetic tools and information pertaining to benzylisoquinoline alkaloid metabolism is facilitating the study of a wide range of phenomena including the structural biology of novel catalysts, the genomic organization of biosynthetic genes, the cellular and sub-cellular localization of biosynthetic enzymes and a variety of biotechnological applications. In this review, we highlight recent developments and summarize the frontiers of knowledge regarding the biochemistry, cellular biology and biotechnology of benzylisoquinoline alkaloid biosynthesis in opium poppy.  相似文献   
6.
Cotyledonary somatic embryos (SEs) of maritime pine are routinely matured for 12 weeks before being germinated and converted to plantlets. Although regeneration success is highly dependent on SEs quality, the date of harvesting is currently determined mainly on the basis of morphological features. This empirical method does not provide any accurate information about embryo quality with respect to storage compounds (proteins, carbohydrates). We first analyzed SEs matured for 10, 12 and 14 weeks by carrying out biological (dry weight, water content) and biochemical measurements (total protein and carbohydrate contents). No difference could be found between collection dates, suggesting that harvesting SEs after 12 weeks is appropriate. Cotyledonary SEs were then compared to various stages, from fresh to fully desiccated, in the development of cotyledonary zygotic embryos (ZEs). We identified profiles that were similar using hierarchical ascendant cluster analysis (HCA). Fresh and dehydrated ZEs could be distinguished, and SEs clustered with fresh ZEs. Both types of embryo exhibited similar carbohydrate and protein contents and signatures. This high level of similarity (94.5 %) was further supported by proteome profiling. Highly expressed proteins included storage, stress-related, late embryogenesis abundant and energy metabolism proteins. By comparing overexpressed proteins in developing and cotyledonary SEs or ZEs, some (23 proteins) could be identified as candidate biomarkers for the late, cotyledonary stage. This is the first report of useful generic protein markers for monitoring embryo development in maritime pine. Our results also suggest that improvements of SEs quality may be achieved if the current maturation conditions are refined.  相似文献   
7.
New data have been acquired on the biology, morphological features and distribution of Norwegian (Atlantic) pollock Theragra finnmarchica in the Barents Sea. Two individuals of this rare species gadoid (Gadidae) were caught in June and July 2012 in the south-eastern part of the Barents Sea, indicating a wider distribution area of this species than previously thought. It has been confirmed that a number of morphological features of Norwegian pollock is different from T. chalcogramma, and that it feeds on macroplankton (Euphausiidae, Hyperiidae).  相似文献   
8.
Eukaryotic ribosome biogenesis involves ∼200 assembly factors, but how these contribute to ribosome maturation is poorly understood. Here, we identify a network of factors on the nascent 60S subunit that actively remodels preribosome structure. At its hub is Rsa4, a direct substrate of the force-generating ATPase Rea1. We show that Rsa4 is connected to the central protuberance by binding to Rpl5 and to ribosomal RNA (rRNA) helix 89 of the nascent peptidyl transferase center (PTC) through Nsa2. Importantly, Nsa2 binds to helix 89 before relocation of helix 89 to the PTC. Structure-based mutations of these factors reveal the functional importance of their interactions for ribosome assembly. Thus, Rsa4 is held tightly in the preribosome and can serve as a “distribution box,” transmitting remodeling energy from Rea1 into the developing ribosome. We suggest that a relay-like factor network coupled to a mechano-enzyme is strategically positioned to relocate rRNA elements during ribosome maturation.  相似文献   
9.
Cell migration is mediated by the dynamic remodeling of focal adhesions (FAs). Recently, an important role of endosomal signaling in regulation of cell migration was recognized. Here, we show an essential function for late endosomes carrying the p14–MP1 (LAMTOR2/3) complex in FA dynamics. p14–MP1-positive endosomes move to the cell periphery along microtubules (MTs) in a kinesin1- and Arl8b-dependent manner. There they specifically target FAs to regulate FA turnover, which is required for cell migration. Using genetically modified fibroblasts from p14-deficient mice and Arl8b-depleted cells, we demonstrate that MT plus end–directed traffic of p14–MP1-positive endosomes triggered IQGAP1 disassociation from FAs. The release of IQGAP was required for FA dynamics. Taken together, our results suggest that late endosomes contribute to the regulation of cell migration by transporting the p14–MP1 scaffold complex to the vicinity of FAs.  相似文献   
10.
During epithelial cell polarization, Yurt (Yrt) is initially confined to the lateral membrane and supports the stability of this membrane domain by repressing the Crumbs-containing apical machinery. At late stages of embryogenesis, the apical recruitment of Yrt restricts the size of the apical membrane. However, the molecular basis sustaining the spatiotemporal dynamics of Yrt remains undefined. In this paper, we report that atypical protein kinase C (aPKC) phosphorylates Yrt to prevent its premature apical localization. A nonphosphorylatable version of Yrt dominantly dismantles the apical domain, showing that its aPKC-mediated exclusion is crucial for epithelial cell polarity. In return, Yrt counteracts aPKC functions to prevent apicalization of the plasma membrane. The ability of Yrt to bind and restrain aPKC signaling is central for its role in polarity, as removal of the aPKC binding site neutralizes Yrt activity. Thus, Yrt and aPKC are involved in a reciprocal antagonistic regulatory loop that contributes to segregation of distinct and mutually exclusive membrane domains in epithelial cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号