首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   20篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   5篇
  2013年   4篇
  2012年   6篇
  2011年   11篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   14篇
  2005年   8篇
  2004年   11篇
  2003年   11篇
  2002年   9篇
  2001年   12篇
  2000年   6篇
  1999年   7篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1992年   9篇
  1991年   7篇
  1990年   2篇
  1989年   10篇
  1988年   3篇
  1987年   6篇
  1986年   9篇
  1985年   9篇
  1984年   10篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1979年   4篇
  1978年   7篇
  1977年   4篇
  1976年   7篇
  1975年   4篇
  1974年   5篇
  1973年   1篇
  1972年   2篇
  1971年   3篇
  1970年   5篇
  1969年   3篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有254条查询结果,搜索用时 157 毫秒
1.
2.
3.
4.
Hematopoietic cell differentiation is influenced by organ-dependent microenvironmental factors as well as humoral regulators. A technique is described for examining certain aspects of the hemopoietic inductive microenvironment in vitro. Suspension and agar cultures of mouse bone marrow were used to study the effects of organ stromal factors on cellular proliferation and differentiation. Bone, spleen, and thymus fragments from irradiated mice were placed in direct contact with or separated by a Nuclepore membrane from syngeneic marrow cells growing in suspension cultures. Normal adult mouse bone and spleen influenced granulocytic differentiation as well as cell proliferation. In this system, bone marrow and organ fragments from W/Wv and SlSld mice behaved like those of their non-anemic littermates. The most prominent difference between W/Wv and Sl/Sla mice and their normal counterparts was observed in the inductionof CFU-C from splenic precursors un-er the influence of CSA. In both types of anemic mice, in vitro generation of CFU-C from spleen was abnormal in young animals but was corrected by four months of age.  相似文献   
5.
Collectins are a family of collagenous calcium-dependent defense lectins in animals. Their polypeptide chains consist of four regions: a cysteine-rich N-terminal domain, a collagen-like region, an alpha-helical coiled-coil neck domain and a C-terminal lectin or carbohydrate-recognition domain. These polypeptide chains form trimers that may assemble into larger oligomers. The best studied family members are the mannan-binding lectin, which is secreted into the blood by the liver, and the surfactant proteins A and D, which are secreted into the pulmonary alveolar and airway lining fluid. The collectins represent an important group of pattern recognition molecules, which bind to oligosaccharide structures and/or lipid moities on the surface of microorganisms. They bind preferentially to monosaccharide units of the mannose type, which present two vicinal hydroxyl groups in an equatorial position. High-affinity interactions between collectins and microorganisms depend, on the one hand, on the high density of the carbohydrate ligands on the microbial surface, and on the other, on the degree of oligomerization of the collectin. Apart from binding to microorganisms, the collectins can interact with receptors on host cells. Binding of collectins to microorganisms may facilitate microbial clearance through aggregation, complement activation, opsonization and activation of phagocytosis, and inhibition of microbial growth. In addition, the collectins can modulate inflammatory and allergic responses, affect apoptotic cell clearance and modulate the adaptive immune system.  相似文献   
6.
7.
The Notch signaling pathway is receiving considerable interest because of its pervasive importance in developmental biology and more recently, in the post-natal functions of the immune system and in cancer biology.Our observations, together with those of other laboratories, support a context-dependent role for Notch signaling in breast cancer.Targeting Notch signaling paves the way to new therapeutic strategy.  相似文献   
8.
Altered production of β-amyloid (Aβ) from the amyloid precursor protein (APP) is closely associated with Alzheimer’s disease (AD). APP has a number of homo- and hetero-dimerizing domains, and studies have suggested that dimerization of β-secretase derived APP carboxyl terminal fragment (CTFβ, C99) impairs processive cleavage by γ-secretase increasing production of long Aβs (e.g., Aβ1-42, 43). Other studies report that APP CTFβ dimers are not γ-secretase substrates. We revisited this issue due to observations made with an artificial APP mutant referred to as 3xK-APP, which contains three lysine residues at the border of the APP ectodomain and transmembrane domain (TMD). This mutant, which dramatically increases production of long Aβ, was found to form SDS-stable APP dimers, once again suggesting a mechanistic link between dimerization and increased production of long Aβ. To further evaluate how multimerization of substrate affects both initial γ-secretase cleavage and subsequent processivity, we generated recombinant wild type- (WT) and 3xK-C100 substrates, isolated monomeric, dimeric and trimeric forms of these proteins, and evaluated both ε-cleavage site utilization and Aβ production. These show that multimerization significantly impedes γ-secretase cleavage, irrespective of substrate sequence. Further, the monomeric form of the 3xK-C100 mutant increased long Aβ production without altering the initial ε-cleavage utilization. These data confirm and extend previous studies showing that dimeric substrates are not efficient γ-secretase substrates, and demonstrate that primary sequence determinants within APP substrate alter γ-secretase processivity.  相似文献   
9.
Understanding how different species of Aβ are generated by γ-secretase cleavage has broad therapeutic implications, because shifts in γ-secretase processing that increase the relative production of Aβx-42/43 can initiate a pathological cascade, resulting in Alzheimer disease. We have explored the sequential stepwise γ-secretase cleavage model in cells. Eighteen BRI2-Aβ fusion protein expression constructs designed to generate peptides from Aβ1–38 to Aβ1–55 and C99 (CTFβ) were transfected into cells, and Aβ production was assessed. Secreted and cell-associated Aβ were detected using ELISA and immunoprecipitation MALDI-TOF mass spectrometry. Aβ peptides from 1–38 to 1–55 were readily detected in the cells and as soluble full-length Aβ proteins in the media. Aβ peptides longer than Aβ1–48 were efficiently cleaved by γ-secretase and produced varying ratios of Aβ1–40:Aβ1–42. γ-Secretase cleavage of Aβ1–51 resulted in much higher levels of Aβ1–42 than any other long Aβ peptides, but the processing of Aβ1–51 was heterogeneous with significant amounts of shorter Aβs, including Aβ1–40, produced. Two PSEN1 variants altered Aβ1–42 production from Aβ1–51 but not Aβ1–49. Unexpectedly, long Aβ peptide substrates such as Aβ1–49 showed reduced sensitivity to inhibition by γ-secretase inhibitors. In contrast, long Aβ substrates showed little differential sensitivity to multiple γ-secretase modulators. Although these studies further support the sequential γ-secretase cleavage model, they confirm that in cells the initial γ-secretase cleavage does not precisely define subsequent product lines. These studies also raise interesting issues about the solubility and detection of long Aβ, as well as the use of truncated substrates for assessing relative potency of γ-secretase inhibitors.  相似文献   
10.
The discoveries of mutations in SNCA were seminal findings that resulted in the knowledge that α‐synuclein (αS) is the major component of Parkinson's disease‐associated Lewy bodies. Since the pathologic roles of these protein inclusions and SNCA mutations are not completely established, we characterized the aggregation properties of the recently identified SNCA mutations, H50Q and G51D, to provide novel insights. The properties of recombinant H50Q, G51D, and wild‐type αS to polymerize and aggregate into amyloid were studied using (trans,trans)‐1‐bromo‐2,5‐bis‐(4‐hydroxy)styrylbenzene fluorometry, sedimentation analyses, electron microscopy, and atomic force microscopy. These studies showed that the H50Q mutation increases the rate of αS aggregation, whereas the G51D mutation has the opposite effect. However, H50Q and G51D αS could still be similarly induced to form intracellular aggregates from the exposure to exogenous amyloidogenic seeds under conditions that promote their cellular entry. Both mutant αS proteins, but especially G51D, promoted cellular toxicity under cellular stress conditions. These findings reveal that the novel pathogenic SNCA mutations, H50Q and G51D, have divergent effects on aggregation properties relative to the wild‐type protein, with G51D αS demonstrating reduced aggregation despite presenting with earlier disease onset, suggesting that these mutants promote different mechanisms of αS pathogenesis.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号