首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  完全免费   1篇
  2018年   1篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
排序方式: 共有11条查询结果,搜索用时 46 毫秒
1.
Calcineurin B-like protein-interacting protein kinases (CIPKs) are a group of typical Ser/Thr protein kinases that mediate calcium signals. Extensive studies using Arabidopsis plants have demonstrated that many calcium signatures that activate CIPKs originate from abiotic stresses. However, there are few reports on the functional demonstration of CIPKs in other plants, especially in grasses. In this study, we used a loss-of-function mutation to characterize the function of the rice CIPK gene OsCIPK31. Exposure to high concentrations of NaCl or mannitol effected a rapid and transient enhancement of OsCIPK31 expression. These findings were observed only in the light. However, longer exposure to most stresses resulted in downregulation of OsCIPK31 expression in both the presence and absence of light. To determine the physiological roles of OsCIPK31 in rice plants, the sensitivity of oscipk31::Ds, which is a transposon Ds insertion mutant, to abiotic stresses was examined during germination and seedling stages. oscipk31::Ds mutants exhibited hypersensitive phenotypes to ABA, salt, mannitol, and glucose. Compared with wild-type rice plants, mutants exhibited retarded germination and slow seedling growth. In addition, oscipk31::Ds seedlings exhibited enhanced expression of several stress-responsive genes after exposure to these abiotic stresses. However, the expression of ABA metabolic genes and the endogenous levels of ABA were not altered significantly in the oscipk31::Ds mutant. This study demonstrated that rice plants use OsCIPK31 to modulate responses to abiotic stresses during the seed germination and seedling stages and to modulate the expression of stress-responsive genes.  相似文献
2.
Transposon tagging and insertional mutagenesis provide one of the most powerful tools in gene function studies. Here, we report a comparison between two novel drooping leaf (DL) mutants from transposon and T-DNA insertion lines of rice. DL is distinct from well-known ABC genes and a member of the YABBY gene family, and it is closely related to the CRABS CLAW (CRC) gene of Arabidopsis thaliana. Based on phenotypic analysis, DL regulated midrib formation by promoting cell proliferation in the central region of rice leaf and was necessary for the specification of carpel identity. We identified two DL mutants by screening the Ac/Ds and T-DNA insertional mutant pool of rice. Flanking sequence tag analysis indicated that both Ds and T-DNA segments were inserted in the promoter region at 3.4 kbs and 5.4 kb upstream, respectively, of the previously known OsYABBY domain. Interestingly, the progenies of DL lines of two different pools showed various degrees of leaf drooping and abnormal carpel formation. Flower structures revealed that there were more than two stigmas with normal stamens and pistils per panicle in the Ds-induced mutants. However, T-DNA induced mutant had extra stamens with staminoid carpels. These results indicate that the promoter region of DL plays an important function in regulating anther and carpel formation.  相似文献
3.
4.
5.
A gene detection strategy using two-component Ac/Ds construct, with the mobile Ds transposon, has been developed to better understand gene functions in crops. Currently, 115,000 Ds insertion lines have been generated through the Ac/Ds gene trap system in Korea using japonica rice Dongjin as donor. Four hundred and thirty-seven mutants from 12,162 Ds-tagged lines were catalogued, including physiological and agronomic traits. Different traits were identified with distinct characteristics in terms of tillers, panicles, leaves, flowers, seed, chlorophyll content, and height. Culm and panicle length, number of panicles, and days to flowering of the Dongjin Ds population revealed high standard deviations compared with the donor cultivar. An evaluation of the Ds distribution on the chromosome revealed that 74.5% of the Ds were reinserted into gene-rich regions, making this Ac/Ds-mediated gene trap system useful in helping to gain an understanding of the function of genes and thus improve the gene-tagging system in rice.  相似文献
6.
The rice embryo is rich in lipid and protein bodies, bioactive chemicals such as dietary fiber, phytic acids, vitamin B and E, and gamma aminobutyric acid (GABA) than the endosperm. In this paper, we report a new giant embryo mutant,ge t, induced from somaclonal variation derived by anther culture in rice. Sequence analysis of Cytochrome P450 of the get mutant revealed thatge t is a new allele of theGE gene with a single point mutation with substitution of amino acid, W395 to L395. The weight of thege t mutant embryo was 3.7 times higher than normal embryo. Tocopherol and mineral content were also higher than the previously reported giant embryo rice variety, Keunnun. These results indicated that this new giant embryo rice (ge t) offers a promising source of genetic material in improving nutritional quality of rice especially tocopherol, essential minerals, and GABA.  相似文献
7.
Seo HM  Jung Y  Song S  Kim Y  Kwon T  Kim DH  Jeung SJ  Yi YB  Yi G  Nam MH  Nam J 《Biotechnology letters》2008,30(10):1833-1838
Most high-affinity phosphate transporter genes (OsPTs) in rice were highly induced in roots when phosphate was depleted. OsPT1, however, was highly expressed in primary roots and leaves regardless of external phosphate concentrations. This finding was confirmed histochemically using transgenic rice plants that express the GUS reporter gene under the control of the OsPT1 promoter, which exhibited high GUS activity even in the phosphate sufficient condition. Furthermore, transgenic rice plants overexpressing the OsPT1 gene accumulated almost twice as much phosphate in the shoots as did wild-type plants. As a result, transgenic plants had more tillers than did wild-type plants, which is a typical physiological indicator for phosphate status in rice.  相似文献
8.
9.
10.
Insertional mutagen-mediated gene tagging populations have been essential resources for analyzing the function of plant genes. In rice, maize transposable elements have been successfully utilized to produce transposant populations. However, many generations and substantial field space are required to obtain a sufficiently sized transposant population. In rice, the japonica and indica subspecies are phenotypically and genetically divergent. Here, callus cultures with seeds carrying Ac and Ds were used to produce 89,700 lines of Dongjin, a japonica cultivar, and 6,200 lines of MGRI079, whose genome is composed of a mixture of the genetic backgrounds of japonica and indica. Of the more than 3,000 lines examined, 67% had Ds elements. Among the Ds-carrying lines, 81% of Dongjin and 63% of MGRI079 contained transposed Ds, with an average of around 2.0 copies. By examining more than 15,000 lines, it was found that 12% expressed the reporter gene GUS during the early-seedling stage. GUS was expressed in root hairs and crown root initials at estimated frequencies of 0.78% and 0.34%, respectively. The 5,271 analyzed Ds loci were found to be randomly distributed over all of the rice chromosomes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Sung Han Park, Nam Soo Jun, Chul Min Kim are contributed equally to this paper  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号