首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   17篇
  2021年   2篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2014年   9篇
  2013年   6篇
  2012年   9篇
  2011年   12篇
  2010年   8篇
  2009年   5篇
  2008年   7篇
  2007年   4篇
  2006年   7篇
  2005年   4篇
  2004年   9篇
  2003年   9篇
  2002年   5篇
  2001年   8篇
  2000年   7篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1993年   2篇
  1992年   4篇
  1991年   8篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1984年   6篇
  1983年   1篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1971年   1篇
排序方式: 共有174条查询结果,搜索用时 171 毫秒
1.
2.

Background and aims

In post mining landscapes as in the Lusatian region (Brandenburg, Germany), Pleistocene coarse-textured, sandy sediments are used for soil rehabilitation and land reclamation. The homogeneously-appearing initial soils are characterized by finer-textured soil clumps (fragments) of different sizes that are embedded in a sandy matrix. These soils with typical local-scale heterogeneity may serve as a model for studying how spatially-distributed soil fragments may be utilized by pioneering plant species. The aim of this study was to gain insight into the physical and chemical properties of sandy matrix and fragments that could possibly explain why embedded fragment may act as hot spots for root growth.

Methods

In 2009, three soil monoliths of dimension 50 cm?×?50 cm?×?50 cm that were exclusively vegetated by Lotus corniculatus L. planted in 2008 were studied. Each layer of 10 cm was sampled successively using a cubic metal frame with 10 cm edge length (25 samples per layer each with a volume of 1 l). The samples were analyzed for root biomass, root lengths and diameter, and for chemical and physical properties of sandy matrix and fragments.

Results

Bulk density, water contents, total carbon, total nitrogen, and plant available calcium contents were higher for the fragments compared to the sandy matrix. The roots of L. corniculatus were heterogeneously distributed in the monoliths. The root density distributions for the 1 L samples indicated a positive influence of fragments on directed root growth. Fragments embedded in the sandy matrix were found to be strongly penetrated by roots despite their relatively high bulk density. The presence of fragments also led to an increased root biomass in the sandy matrix in the direct vicinity of fragments. Such direct effects on root development were accompanied by more indirect effects by locally-elevated moisture and nutrient contents.

Conclusion

The results suggest that finer-textured fragments embedded in coarser-textured sediments, can have favorable effect on plant and root development during the initial stages of establishment of vegetation cover. The fragments can act as water and nutrient hot spots to improve supply of pioneering plants especially in coarse-textured soil. The existence of small-scale heterogeneities owing to incomplete sediment mixing e.g., in soil reclamation, could be generally important for controlling the speed and direction of early plants-establishment, for instance, in the succession of post-mining areas.  相似文献   
3.
The formation of dynamic membrane microdomains is an important phenomenon in many signal transduction and membrane trafficking events. It is driven by intrinsic properties of membrane lipids and integral as well as membrane-associated proteins. Here we analyzed the ability of one peripherally associated membrane protein, annexin A2 (AnxA2), to induce the formation of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-rich domains in giant unilamellar vesicles (GUVs) of complex lipid composition. AnxA2 is a cytosolic protein that can bind PI(4,5)P2 and other acidic phospholipids in a Ca2+-dependent manner and that has been implicated in cellular membrane dynamics in endocytosis and exocytosis. We show that AnxA2 binding to GUVs induces lipid phase separation and the recruitment of PI(4,5)P2, cholesterol and glycosphingolipids into larger clusters. This property is observed for the full-length monomeric protein, a mutant derivative comprising the C-terminal protein core domain and for AnxA2 residing in a heterotetrameric complex with its intracellular binding partner S100A10. All AnxA2 derivatives inducing PI(4,5)P2 clustering are also capable of forming interconnections between PI(4,5)P2-rich microdomains of adjacent GUVs. Furthermore, they can induce membrane indentations rich in PI(4,5)P2 and inward budding of these membrane domains into the lumen of GUVs. This inward vesiculation is specific for AnxA2 and not shared with other PI(4,5)P2-binding proteins such as the pleckstrin homology (PH) domain of phospholipase Cδ1. Together our results indicate that annexins such as AnxA2 can efficiently induce membrane deformations after lipid segregation, a mechanism possibly underlying annexin functions in membrane trafficking.  相似文献   
4.
5.
Shigella is the leading cause for dysentery worldwide. Together with several virulence factors employed for invasion, the presence and length of the O antigen (OAg) of the lipopolysaccharide (LPS) plays a key role in pathogenesis. S. flexneri 2a has a bimodal OAg chain length distribution regulated in a growth-dependent manner, whereas S. sonnei LPS comprises a monomodal OAg. Here we reveal that S. sonnei, but not S. flexneri 2a, possesses a high molecular weight, immunogenic group 4 capsule, characterized by structural similarity to LPS OAg. We found that a galU mutant of S. sonnei, that is unable to produce a complete LPS with OAg attached, can still assemble OAg material on the cell surface, but a galU mutant of S. flexneri 2a cannot. High molecular weight material not linked to the LPS was purified from S. sonnei and confirmed by NMR to contain the specific sugars of the S. sonnei OAg. Deletion of genes homologous to the group 4 capsule synthesis cluster, previously described in Escherichia coli, abolished the generation of the high molecular weight OAg material. This OAg capsule strongly affects the virulence of S. sonnei. Uncapsulated knockout bacteria were highly invasive in vitro and strongly inflammatory in the rabbit intestine. But, the lack of capsule reduced the ability of S. sonnei to resist complement-mediated killing and to spread from the gut to peripheral organs. In contrast, overexpression of the capsule decreased invasiveness in vitro and inflammation in vivo compared to the wild type. In conclusion, the data indicate that in S. sonnei expression of the capsule modulates bacterial pathogenesis resulting in balanced capabilities to invade and persist in the host environment.  相似文献   
6.
Biological membranes are organized into dynamic microdomains that serve as sites for signal transduction and membrane trafficking. The formation and expansion of these microdomains are driven by intrinsic properties of membrane lipids and integral as well as membrane-associated proteins. Annexin A2 (AnxA2) is a peripherally associated membrane protein that can support microdomain formation in a Ca2+-dependent manner and has been implicated in membrane transport processes. Here, we performed a quantitative analysis of the binding of AnxA2 to solid supported membranes containing the annexin binding lipids phosphatidylinositol-4,5-bisphosphate and phosphatidylserine in different compositions. We show that the binding is of high specificity and affinity with dissociation constants ranging between 22.1 and 32.2 nM. We also analyzed binding parameters of a heterotetrameric complex of AnxA2 with its S100A10 protein ligand and show that this complex has a higher affinity for the same membranes with Kd values of 12 to 16.4 nM. Interestingly, binding of the monomeric AnxA2 and the AnxA2-S100A10 complex are characterized by positive cooperativity. This cooperative binding is mediated by the conserved C-terminal annexin core domain of the protein and requires the presence of cholesterol. Together our results reveal for the first time, to our knowledge, that AnxA2 and its derivatives bind cooperatively to membranes containing cholesterol, phosphatidylserine, and/or phosphatidylinositol-4,5-bisphosphate, thus providing a mechanistic model for the lipid clustering activity of AnxA2.  相似文献   
7.
Direct linkage between the plasma membrane and the actin cytoskeleton is controlled by the protein ezrin, a member of the ezrin-radixin-moesin protein family. To function as a membrane-cytoskeleton linker, ezrin needs to be activated in a process that involves binding of ezrin to phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphorylation of a conserved threonine residue. Here, we used colloidal probe microscopy to quantitatively analyze the interaction between ezrin and F-actin as a function of these activating factors. We show that the measured individual unbinding forces between ezrin and F-actin are independent of the activating parameters, in the range of approximately 50 piconewtons. However, the cumulative adhesion energy greatly increases in the presence of PIP2 demonstrating that a larger number of bonds between ezrin and F-actin has formed. In contrast, the phosphorylation state, represented by phosphor-mimetic mutants of ezrin, only plays a minor role in the activation process. These results are in line with in vivo experiments demonstrating that an increase in PIP2 concentration recruits more ezrin to the apical plasma membrane of polarized cells and significantly increases the membrane tension serving as a measure of the adhesion sites between the plasma membrane and the F-actin network.  相似文献   
8.
Fungal genomics revealed a large potential of yet-unexplored secondary metabolites, which are not produced during vegetative growth. The discovery of novel bioactive compounds is increasingly gaining importance. The high number of resistances against established antibiotics requires novel drugs to counteract increasing human and animal mortality rates. In addition, growth of plant pathogens has to be controlled to minimize harvest losses. An additional critical issue is the post-harvest production of deleterious mycotoxins. Fungal development and secondary metabolite production are linked processes. Therefore, molecular regulators of development might be suitable to discover new bioactive fungal molecules or to serve as targets to control fungal growth, development, or secondary metabolite production. The fungal impact is relevant as well for our healthcare systems as for agriculture. We propose here to use the knowledge about mutant strains discovered in fungal model systems for a broader application to detect and explore new fungal drugs or toxins. As examples, mutant strains impaired in two conserved eukaryotic regulatory complexes are discussed. The COP9 signalosome (CSN) and the velvet complex act at the interface between development and secondary metabolism. The CSN is a multi-protein complex of up to eight subunits and controls the activation of CULLIN-RING E3 ubiquitin ligases, which mark substrates with ubiquitin chains for protein degradation by the proteasome. The nuclear velvet complex consists of the velvet-domain proteins VeA and VelB and the putative methyltransferase LaeA acting as a global regulator for secondary metabolism. Defects in both complexes disturb fungal development, light perception, and the control of secondary metabolism. The potential biotechnological relevance of these developmental fungal mutant strains for drug discovery, agriculture, food safety, and human healthcare is discussed.  相似文献   
9.
Viguiera oblongifolia afforded two known furanoheliangolides and a new cadinane derivative whose structure was established by spectroscopic methods. From V. lanceolata 17,18-dihydrobudlein A was isolated.  相似文献   
10.
Von-Willebrand factor (vWF) is a highly multimerized hemostatic glycoprotein that is stored in endothelial Weibel-Palade bodies (WPB) and secreted upon cell stimulation to act in recruiting platelets to sites of vessel injury. Only fully matured multimeric vWF represents an efficient anchor for platelets, and endothelial cells have developed mechanisms to prevent release of immature vWF. Full maturation of vWF occurs within WPB following their translocation from a perinuclear site of emergence at the trans-Golgi network (TGN) to the cell periphery. The WPB-associated small GTPase Rab27a is involved in restricting immature WPB exocytosis and we searched for links between Rab27a and the actin cytoskeleton that could anchor WPB inside endothelial cells until they are fully matured. We here identify myosin Va as such link. Myosin Va forms a tripartite complex with Rab27a and its effector MyRIP and depletion of or dominant-negative interference with myosin Va leads to an increase in the ratio of perinuclear to more peripheral WPB. Concomitantly, myosin Va depletion results in an elevated secretion of less-oligomeric vWF from histamine-stimulated endothelial cells. These results indicate that a Rab27a/MyRIP/myosin Va complex is involved in linking WPB to the peripheral actin cytoskeleton of endothelial cells to allow full maturation and prevent premature secretion of vWF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号