首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20509篇
  免费   1708篇
  国内免费   29篇
  2021年   151篇
  2020年   141篇
  2019年   198篇
  2018年   242篇
  2017年   205篇
  2016年   338篇
  2015年   623篇
  2014年   671篇
  2013年   1035篇
  2012年   1138篇
  2011年   1170篇
  2010年   722篇
  2009年   685篇
  2008年   1074篇
  2007年   1111篇
  2006年   1017篇
  2005年   1018篇
  2004年   949篇
  2003年   939篇
  2002年   909篇
  2001年   227篇
  2000年   182篇
  1999年   254篇
  1998年   260篇
  1997年   180篇
  1996年   194篇
  1995年   180篇
  1994年   199篇
  1993年   171篇
  1992年   179篇
  1991年   168篇
  1990年   145篇
  1989年   156篇
  1988年   172篇
  1987年   158篇
  1986年   147篇
  1985年   183篇
  1984年   199篇
  1983年   190篇
  1982年   206篇
  1981年   240篇
  1980年   206篇
  1979年   164篇
  1978年   192篇
  1977年   170篇
  1976年   141篇
  1975年   148篇
  1974年   161篇
  1973年   161篇
  1968年   112篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Plant trichomes play important protective functions and may have a major influence on leaf surface wettability. With the aim of gaining insight into trichome structure, composition, and function in relation to water-plant surface interactions, we analyzed the adaxial and abaxial leaf surface of holm oak (Quercus ilex) as a model. By measuring the leaf water potential 24 h after the deposition of water drops onto abaxial and adaxial surfaces, evidence for water penetration through the upper leaf side was gained in young and mature leaves. The structure and chemical composition of the abaxial (always present) and adaxial (occurring only in young leaves) trichomes were analyzed by various microscopic and analytical procedures. The adaxial surfaces were wettable and had a high degree of water drop adhesion in contrast to the highly unwettable and water-repellent abaxial holm oak leaf sides. The surface free energy and solubility parameter decreased with leaf age, with higher values determined for the adaxial sides. All holm oak leaf trichomes were covered with a cuticle. The abaxial trichomes were composed of 8% soluble waxes, 49% cutin, and 43% polysaccharides. For the adaxial side, it is concluded that trichomes and the scars after trichome shedding contribute to water uptake, while the abaxial leaf side is highly hydrophobic due to its high degree of pubescence and different trichome structure, composition, and density. Results are interpreted in terms of water-plant surface interactions, plant surface physical chemistry, and plant ecophysiology.Plant surfaces have an important protecting function against multiple biotic and abiotic stress factors (Riederer, 2006). They may, for example, limit the attack of insects (Eigenbrode and Jetter, 2002) or pathogenic fungi (Gniwotta et al., 2005; Łaźniewska et al., 2012), avoid damage caused by high intensities of UV and visible radiation (Reicosky and Hanover, 1978; Karabourniotis and Bormann, 1999), help to regulate leaf temperature (Ehleringer and Björkman, 1978; Ripley et al., 1999), and chiefly prevent plant organs from dehydration (Riederer and Schreiber, 2001).The epidermis of plants has been found to have a major degree of physical and chemical variability and may often contain specialized cells such as trichomes or stomata (Roth-Nebelsick et al., 2009; Javelle et al., 2011). Most aerial organs are covered with an extracellular and generally lipid-rich layer named the cuticle, which is typically composed of waxes embedded in (intracuticular waxes) or deposited on (epicuticular waxes) a biopolymer matrix of cutin, forming a network of cross-esterified hydroxy C16 and/or C18 fatty acids, and/or cutan, with variable amounts of polysaccharides and phenolics (Domínguez et al., 2011; Yeats and Rose, 2013). Different nano- and/or microscale levels of plant surface sculpturing have been observed by scanning electron microscopy (SEM), generally in relation to the topography of epicuticular waxes, cuticular folds, and epidermal cells (Koch and Barthlott, 2009). Such surface features together with their chemical composition (Khayet and Fernández, 2012) may lead to a high degree of roughness and hydrophobicity (Koch and Barthlott, 2009; Konrad et al., 2012). The interactions of plant surfaces with water have been addressed in some investigations (Brewer et al., 1991; Brewer and Smith, 1997; Pandey and Nagar, 2003; Hanba et al., 2004; Dietz et al., 2007; Holder, 2007a, 2007b; Fernández et al., 2011, 2014; Roth-Nebelsick et al., 2012; Wen et al., 2012; Urrego-Pereira et al., 2013) and are a topic of growing interest for plant ecophysiology (Helliker and Griffiths, 2007; Aryal and Neuner, 2010; Limm and Dawson, 2010; Kim and Lee, 2011; Berry and Smith, 2012; Berry et al., 2013; Rosado and Holder, 2013; Helliker, 2014). On the other hand, the mechanisms of foliar uptake of water and solutes by plant surfaces are still not fully understood (Fernández and Eichert, 2009; Burkhardt and Hunsche, 2013), but they may play an important ecophysiological role (Limm et al., 2009; Johnstone and Dawson, 2010; Adamec, 2013; Berry et al., 2014).The importance of trichomes and pubescent layers on water drop-plant surface interactions and on the subsequent potential water uptake into the organs has been analyzed in some investigations (Fahn, 1986; Brewer et al., 1991; Grammatikopoulos and Manetas, 1994; Brewer and Smith, 1997; Pierce et al., 2001; Kenzo et al., 2008; Fernández et al., 2011, 2014; Burrows et al., 2013). Trichomes are unicellular or multicellular and glandular or nonglandular appendages, which originate from epidermal cells only and develop outwards on the surface of plant organs (Werker, 2000). Nonglandular trichomes are categorized according to their morphology and exhibit a major variability in size, morphology, and function. On the other hand, glandular trichomes are classified by the secretory materials they excrete, accumulate, or absorb (Johnson, 1975; Werker, 2000; Wagner et al., 2004). Trichomes can be often found in xeromorphic leaves and in young organs (Fahn, 1986; Karabourniotis et al., 1995). The occurrence of protecting leaf trichomes has been also reported for Mediterranean species such as holm oak (Quercus ilex; Karabourniotis et al., 1995, 1998; Morales et al., 2002; Karioti et al., 2011; Camarero et al., 2012). There is limited information about the nature of the surface of trichomes, but they are also covered with a cuticle similarly to other epidermal cell types (Fernández et al., 2011, 2014).In this study and using holm oak as a model, we assessed, for the first time, the leaf surface-water relations of the abaxial (always pubescent) versus the adaxial (only pubescent in developing leaves and for a few months) surface, including their capacity to absorb surface-deposited water drops. Based on membrane science methodologies (Fernández et al., 2011; Khayet and Fernández, 2012) and following a new integrative approach, the chemical, physical, and anatomical properties of holm oak leaf surfaces and trichomes were analyzed, with the aim of addressing the following questions. Are young and mature adaxial and abaxial leaf surfaces capable of absorbing water deposited as drops on to the surfaces? Are young and mature abaxial and adaxial leaf surfaces similar in relation to their wettability, hydrophobicity, polarity, work of adhesion (Wa) for water, solubility parameter (δ), and surface free energy (γ)? What is the physical and chemical nature of the adaxial versus the abaxial trichomes, chiefly in relation to young leaves?  相似文献   
2.
3.
We combine total internal reflection fluorescence structured illumination microscopy with spatiotemporal image correlation spectroscopy to quantify the flow velocities and directionality of filamentous-actin at the T cell immunological synapse. These techniques demonstrate it is possible to image retrograde flow of filamentous-actin at superresolution and provide flow quantification in the form of velocity histograms and flow vector maps. The flow was found to be retrograde and radially directed throughout the periphery of T-cells during synapse formation.Many biological processes are now being visualized with the use of superresolution fluorescence microscopy techniques. However, localization-based techniques primarily rely on fixed or slow moving samples to permit the collection of structural information. The 10-fold gains in resolution afforded by these superresolution techniques are usually possible through sacrificing the factors that originally made microscopy such a powerful tool: the ability to image live cells. In the case of stimulated emission depletion imaging, the scanning approach associated with this technique may fail to detect faster molecular events when imaging whole cellular regions.Structured illumination microscopy (SIM) is an alternative to these methods (1). It increases the resolution of conventional fluorescence microscopy twofold; it has the advantage of using a wide-field system, providing fast acquisition speeds of whole cells with relatively low laser powers; and it is compatible with standard fluorophores. By using a physical grating to produce interference patterns from a laser, periodic illumination is created. This patterned illumination causes information from higher spatial frequencies to be downmodulated (i.e., shifted) into the optical transfer function (support region) of the lens, resulting in higher-resolution spatial information being captured than is ordinarily obtainable.To quantify the directional motion of intracellular molecules, spatiotemporal image correlation spectroscopy (STICS (2)) was applied. Using spatial image correlation in time, STICS measures the similarity of pixels with those surrounding in lagging frames via a correlation function. The correlation function provides information on both flow velocities and directionality, while discounting static structures through the immobile object filter, achieved by subtracting a moving average of pixel intensities.The formation of an immunological synapse between T cells and antigen-presenting cells is a process requiring many dynamic (3) and subdiffraction-limited clustering events (4–6) to take place. The polymerization of actin is important for the spreading of cells over their target antigen-presenting cells (7), as well as cell mobility and migration (8). Retrograde flow of densely meshed cortical actin is observed at the basal membrane of synapse-forming T cells, where it may have a role in the corralling and clustering of signaling molecules at the plasma membrane (9), as well as at the leading edge of migrating cells (10). Filamentous actin is an extremely dynamic (7), densely packed, and thin (7-nm) structure (11,12).Here, we perform STICS on SIM data acquired on a total internal reflection fluorescence (TIRF) microscope system, which generated an evanescent field of 75-nm depth for excitation. To our knowledge, this is the first demonstration of an image correlation approach to quantify molecular dynamics on subresolution length scales using wide-field microscopy. To demonstrate the technique, we analyze two-dimensional actin flows in CD4+ T cells during immunological synapse formation, performed after cross-linking of antigen T cell receptors on a coverslip coated with specific antibodies.Fig. 1 a shows a schematic of the TIRF SIM setup. Excitation light (488 nm) passes through a polarizing module and then a phase-grating block, producing diffracted beams. These are then passed through a diffraction filter module to isolate the −1 and +1 order laser beams. These first-order laser beams are angled through the objective to produce total internal reflection conditions at the glass-water interface. The two evanescent waves interfere at the sample, producing structured illumination. The setup then produces lateral and rotational shifts through three orientations, producing nine raw images containing higher spatial frequencies than can normally be acquired by an objective using standard light microscopy. Fig. 1 b demonstrates the increased resolution obtained from TIRF SIM. Shown are the collected Fourier frequencies compared to those of a conventional microscope (dotted red line). Resolution was also measured using sparse 100-nm diameter fluorescent beads. Fig. 1 c shows a magnified image of these beads from which a line profile was obtained (yellow arrow). The full width at half-maximum of this profile (Fig. 1 d) gives a lateral resolution for the system of 120 nm.Open in a separate windowFigure 1(a) Schematic of the TIRF SIM setup. (b) Demonstration of the doubling of spatial resolution of collected frequencies through a Fourier transform (superimposed red circle demonstrating regular spatial frequency limits). (c) SIM reconstructed image of 100-nm bead (scale bar 0.5 μm). (d) (Plotted line) Bead showing full width at half-maximum of 120 nm.We then applied STICS analysis to quantify actin flow in T cell synapses acquired using TIRF SIM (Fig. 2). Fig. 2 a shows a schematic of the STICS analysis. From the raw data, immobile objects are first filtered by subtracting a moving average of the pixel values. Vector maps were obtained from correlation analysis of the time-series as previously published in Hebert et al. (2) and Brown et al. (13). Fig. 2 b shows a reconstructed TIRF SIM image of a mature T cell immunological synapse, representative of a time-point derived from the time series acquired at 1.28 fps (see Movie S1 in the Supporting Material). From this reconstructed image, two representative regions have been selected. In these regions, pseudo-colored actin flow vectors are overlaid onto the fluorescence intensity image. These range in magnitude from 0.01 μm/min (blue) to 5.61 μm/min (red). It can be observed that all flow vectors are directed radially toward the synapse center. A histogram of this flow is shown in Fig. 2 c. The histogram shows a peak retrograde flow velocity of 1.91 ± 1.27 μm/min. These data are representative of n = 7 T-cell synapses imaged by TIRF SIM.Open in a separate windowFigure 2(a) STICS analysis, performed by isolating mobile from immobile structures through a moving average filter (i) and binning a subset of pixels into blocks of superpixels (ii); the STICS software correlates spatial fluorescence fluctuations through time (iii). The code then outputs vector maps showing directionality and flow velocities. (b) TIRF SIM image of actin flow in a T cell 5 min after contact with a stimulatory coverslip. (Zoomed regions) Retrograde actin flow at the synapse periphery. (c) Histograms showing flow speed statistics of vectors from T-cell synapses (n = 7).  相似文献   
4.
In the last few years, there has been an intense interest in using microalgal lipids in food, chemical and pharmaceutical industries and cosmetology, while a noteworthy research has been performed focusing on all aspects of microalgal lipid production. This includes basic research on the pathways of solar energy conversion and on lipid biosynthesis and catabolism, and applied research dealing with the various biological and technical bottlenecks of the lipid production process. In here, we review the current knowledge in microalgal lipids with respect to their metabolism and various biotechnological applications, and we discuss potential future perspectives.  相似文献   
5.
Enteric nervous system progenitor cells isolated from postnatal human gut and cultured as neurospheres can then be transplanted into aganglionic gut to restore normal patterns of contractility. These progenitor cells may be of future use to treat patients with Hirschprung’s disease, a congenital condition characterized by hindgut dysmotility due to the lack of enteric nervous system ganglia. Here we demonstrate that progenitor cells can also be isolated from aganglionic gut removed during corrective surgery for Hirschsprung’s disease. Although the enteric nervous system marker calretinin is not expressed in the aganglionic gut region, de novo expression is initiated in cultured neurosphere cells isolated from aganglionic Hirschsprung bowel. Furthermore, expression of the neural markers NOS, VIP and GFAP also increased during culture of aganglionic gut neurospheres which we show can be transplantation into cultured embryonic mouse gut explants to restore a normal frequency of contractility. To determine the origin of the progenitor cells in aganglionic region, we used fluorescence-activated cell sorting to demonstrate that only p75-positive neural crest-derived cells present in the thickened nerve trunks characteristic of the aganglionic region of Hirschsprung gut gave rise to neurons in culture. The derivation of enteric nervous system progenitors in the aganglionic gut region of Hirschprung’s patients not only means that this tissue is a potential source of cells for future autologous transplantation, but it also raises the possibility of inducing the differentiation of these endogenous cells in situ to compensate for the aganglionosis.  相似文献   
6.
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin gene. Major pathological hallmarks of HD include inclusions of mutant huntingtin (mHTT) protein, loss of neurons predominantly in the caudate nucleus, and atrophy of multiple brain regions. However, the early sequence of histological events that manifest in region- and cell-specific manner has not been well characterized. Here we use a high-content histological approach to precisely monitor changes in HTT expression and characterize deposition dynamics of mHTT protein inclusion bodies in the recently characterized zQ175 knock-in mouse line. We carried out an automated multi-parameter quantitative analysis of individual cortical and striatal cells in tissue slices from mice aged 2–12 months and confirmed biochemical reports of an age-associated increase in mHTT inclusions in this model. We also found distinct regional and subregional dynamics for inclusion number, size and distribution with subcellular resolution. We used viral-mediated suppression of total HTT in the striatum of zQ175 mice as an example of a therapeutically-relevant but heterogeneously transducing strategy to demonstrate successful application of this platform to quantitatively assess target engagement and outcome on a cellular basis.  相似文献   
7.
8.
The Species Survival Commission (SSC) of IUCN—the World Conservation Union is the largest, most comprehensive and diverse professional conservation network in existence today. It brings together over 6000 volunteers from more than 160 countries to contribute to the conservation of biological diversity by developing and executing programmes to study, save, restore, and manage wisely species and their habitats. The SSC is organized primarily along taxonomic lines, with members distributed in 96 Specialist Groups focusing on distinct groups of species. These groups are a source of the most current and expert information on the conservation status and priorities for action for species in the wild. As such, they provide an invaluable resource in setting priorities for captive propagation and in linking ex situ actions. In addition, the SSC has five disciplinary Specialist Groups that provide expertise to both the zoo community and field conservationists in areas such as reintroductions, veterinary medicine, captive breeding as a conservation tool, and the impact of invasive species on native flora and fauna. The effectiveness of the SSC is greatly enhanced by the close connections within its network between zoo professionals, academic scientists, field conservationists, and managers of natural resources. Challenges to the SSC currently include better information management, organization at the national level, and extending coverage in areas such as marine biodiversity.  相似文献   
9.
1.  Rats which survived hypoglycemia by insulin, hypoxia by 10% O2, or ischemia by carotid ligation and hypotension to 40 mm Hg, evidenced no changes in cerebrospinal fluid (CSF) uridine. Animals which died soon after the above interventions or as a result of KCl-induced cardiac arrest had elevated CSF uridine concentrations.
2.  Injection of whole blood or the soluble contents of lysed blood cells into the lateral ventricle of rats reduced CSF uridine to less than one-half normal at 24 hrs but values returned to normal 3 days later. Changes in hypoxanthine resembled those of uridine, but were less dramatic, whereas xanthine concentrations were largely unaltered. Intraventricular injection of plasma or saline did not alter CSF uridine.
3.  It seems most likely that low CSF uridine concentrations previously reported in head injury patients may be secondary to the effects of blood cell contents in the cerebrospinal fluid, rather than responses to altered metabolism in neurons or glia cells.
  相似文献   
10.
1. Although preference–performance relationships in insects are typically studied in a bi-trophic context, it is well known that host plants can affect both the preference and performance of natural enemies of herbivorous insects. 2. This study presents evidence from field and laboratory studies that two species of milkweeds, the putatively less defended Asclepias incarnata and the putatively more defended Asclepias syriaca, differentially affect adult oviposition and larval performance in Aphidoletes aphidimyza, an aphid-feeding predatory midge, independent of aphid density. 3. Host plant species affected predatory fly larvae abundance by a factor of 50 in the field and a factor of 8 in the laboratory. Larval and adult emergence rates in our laboratory studies provided strong evidence for reduced performance on A. syriaca. Oviposition in choice and no-choice settings provided some evidence for preference for A. incarnata, and a potentially suppressive effect of A. syriaca. 4. The results provide limited support for the hypothesis that natural selection can lead to positive correlations between adult oviposition preferences and larval performance upon various food sources, even when predatory insects oviposit onto host plants of their herbivorous prey. 5. Preference and performance are not perfectly aligned in this system, however, because ovipositing females do not reject A. syriaca entirely. Potential explanations for mismatches between preference and performance in this system include the neural constraints associated with being a generalist, adaptive time-limited foraging strategies, and unique evolutionary histories of laboratory colonies compared with wild insects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号