首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   8篇
  2022年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   7篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   6篇
  2000年   1篇
  1998年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1975年   2篇
  1972年   2篇
  1971年   1篇
  1941年   1篇
  1927年   1篇
排序方式: 共有63条查询结果,搜索用时 437 毫秒
1.
Ventilatory rate reponses of Diplodus bermudensis, Holocentrus rufus, Haemulon flavoleneatum and Haemulon sciurus to acute rotenone exposure were recorded by monitoring impedance changes accompanying opercular movements in individual specimens. Results identified two tolerance groups, each of which dislayed similar ventilatory response patterns but at different concentrations of rotenone. Exposure revels required to etablish opercular paralysis were found to be considerably less than that reported for 24 hour LC50 of many freshwater organisms, indicating a high degree of toxic sensitivity for the four marine species examined.

Zusammenfassung


Ventilationsreaktion von vier marinen Teleosteirn bei akuter Rotenone-Exposition
Die Ventilationshäufigkeit von Dilodus bermudensis, Holocentrus rufus, Haemulon flavoleneatum und Haemulon sciurus gegenüber akuten Rotenone-Dosen wurde durch die Veränderung der Impedanz der Kiemendeckelbewegungen registriert. Die Ergebnisse zeigen zwei Toleranzgruppen, die jeweils ahnliche Ventilationshäufigkeiten erkennen lassen jedoch bei verschiedenen Rotenone-Konzentrationen. Die notwendige Konzentration für eine Lähmung der Kiemendeckelbewegungen war viel niedriger als die LC50/24 für viele Süßwasserorganismen. Dieses zeigt die hohe toxische Sensibilität der vier untersuchten Arten gegenüber Rotenone.  相似文献   
2.
This study was carried out to define how the overall rate of reaction would be influenced by different degrees of diffusional resistance to cofactor transport within an oxidoreductase membrane matrix. To accomplish this, 0.7–6.6μM yeast alcohol dehydrogenase was immobilized in an albumin matrix crosslinked with 2.5 or 5.0% glutaraldehyde to give 102–1685 μM thick membranes. The enzyme half-life was at least doubled at pH 7.5 or 8.8 on immobilization. Values of the kinetic constants for the soluble and immobilized enzyme were determined at 25°C and pH 8.8 over the range of 0.01–1.0M bulk solution concentration of ethanol as substrate and 140–1000μM bulk solution concentration of nicotinamide adenine dinucleotide (NAD+) as cofactor, to give essentially single substrate kinetics in NAD+. Equilibrium partitioning of ethanol and NAD+ between the solution and membrane was measured and used in the data analysis. The four kinetic constants for the soluble enzyme agreed with literature values; and all increased with immobilization of the enzyme. The Michaelis constants for NAD+ and for ethanol were greater for the immobilized enzyme. The diffusional resistance to NAD+ transport, presented in terms of the Thiele modulus, showed that the overall rate of reaction was decreased by about 50% even at values of the modulus as low as 2.0.  相似文献   
3.
Maintenance of the detumescent state of the penis is believed to involve the actions of several vasoconstrictors. However, our mechanistic understanding of any synergistic vasoconstrictor influences is extremely limited. We tested the hypothesis that a vasoconstrictor combination of endothelin (ET-1) and phenylephrine (PE) augments the constrictor responses in rat corporal cavernosal tissues by a mechanism involving the RhoA-Rho kinase pathway. Independently, ET-1 (1 nM-30 microM) and PE (100 nM-100 microM) both caused dose-dependent contractions of isolated rat cavernosal tissues. In combination, ET-1 (30 nM) augmented the contractile effect of PE and shifted the calculated EC50 for PE (90 +/- 12 to 45 +/- 5 microM). The active stress generated by cavernosal strips during the ET-1 + PE combined stimulation (4.9 +/- 0.2 mN/mm2) was greater than the combined stress generated with ET-1 (0.4 +/- 0.1 mN/mm2) or PE (3.3 +/- 0.2 mN/mm2) stimulations alone. Blockade of ETA receptors (30 nM; A-127722) reversed the augmented stress generation and the Rho-kinase inhibitor Y-27632 differentially and dose-dependently relaxed the tissue. The combined constrictor effect was associated with a fourfold increase of RhoA in the membrane faction of the tissue homogenates. We conclude that the ET-1 + PE combination potentiate vasoconstriction through mutual activation of the RhoA-Rho kinase pathway. The interactions of these agonists likely play important roles in the maintenance of the flaccid state and contribute to some forms of erectile dysfunction.  相似文献   
4.
Specific receptor antagonists were used to examine the role of endothelin-1 (ET-1) in the erectile response of the rat. In these studies, intact rats were cannulated to permit the continuous recording of mean arterial pressure (MAP) and intracavernosal pressure (CCP). Erection was induced by electrical stimulation of the autonomic ganglion, which regulates blood flow to the penis. The animals were subjected to intracavernosal injection with vehicle only (Cont) or with an antagonist to the endothelin-A receptor (ET(A)) or to the endothelin-B receptor (ET(B)). Blockade of the ET(A) or the ET(B) had no effect on the erectile response (CCP/MAP) during maximal ganglionic stimulation. When ET-1 was injected into Cont rats, there was a marked vasoconstriction with a sharp rise in MAP and a decline in CCP as the cavernosal arterioles constricted and limited inflow. The injection of the ET(A) antagonist prevented the vasoconstriction after ET-1 injection into Cont rats, whereas blockade of the ET(B) had no effect on the vasoconstrictive effect to ET-1. Similar results were obtained during submaximal ganglionic stimulation. With minimal levels of ganglionic stimulation, ET-1 injection led to a moderated degree of vasodilation in the presence of the ET(A) antagonist. The ET(B) antagonist failed to alter the CCP response during minimal stimulation, but it did have a marked effect on the MAP response to ET-1 injection. The results of these studies confirm that cavernosal tissue of the rat penis is highly responsive to ET-1. However, the failure of the ET-1 antagonists to affect penile erection in response to ganglionic stimulation reflects a minimal role of ET-1 in the erectile response in the rat.  相似文献   
5.
Assays of photosynthesis were conducted with a biofilm population of a cyanobacterium, a Synechococcus sp., growing at ~70°C in a Yellowstone National Park hot spring to test whether cells growing near the upper temperature limit of photosynthetic life are optimally adapted to their mean environmental temperature. Cell suspensions were assayed at 70, 65, and 55°C while being simultaneously exposed to modified solar environments, including reduction of total irradiance and exclusion of UV radiation. Carbon fixation was greatest at 65°C, while 70 and 55°C were always supraoptimal and suboptimal for photosynthesis, respectively. The degree of temperature stress was dependent upon light intensity, and this light-dependent temperature effect may involve both reduced quantum efficiency at subsaturating irradiances and a lower saturating irradiance at both supraoptimal and suboptimal temperatures. The Synechococcus sp. was also more susceptible to UV inhibition of photosynthesis at nonoptimal temperatures. These results suggest that this population is persisting at a nearly lethal temperature and is consequently subject to greater damage by both visible and UV radiation, but it is speculated that these cells may be avoiding competition with other photoautotrophs under these nonoptimal conditions. In separate experiments monitoring diurnal patterns of photosynthesis, cells exhibited peak productivity during the morning, followed by an afternoon decline. No recovery of photosynthesis was observed during the remaining daytime, and carbon fixation was always UV inhibited under conditions of photosynthetically saturating light.  相似文献   
6.

Background

The malaria parasite Plasmodium falciparum EBA-175 binds its receptor sialic acids on glycophorin A when invading erythrocytes. The receptor-binding region (RII) contains two cysteine-rich domains with similar cysteine motifs (F1 and F2). Functional relationships between F1 and F2 domains and characterization of EBA-175 were studied using specific monoclonal antibodies (mAbs) against these domains.

Methods and Findings

Five mAbs specific for F1 or F2 were generated. Three mAbs specific for F2 potently blocked binding of EBA-175 to erythrocytes, and merozoite invasion of erythrocytes (IC50 10 to 100 µg/ml IgG in growth inhibition assays). A mAb specific for F1 blocked EBA-175 binding and merozoite invasion less effectively. The difference observed between the IC50 of F1 and F2 mAbs was not due to differing association and disassociation rates as determined by surface plasmon resonance. Four of the mAbs recognized conformation-dependent epitopes within F1 or F2. Used in combination, F1 and F2 mAbs blocked the binding of native EBA-175 to erythrocytes and inhibited parasite invasion synergistically in vitro. MAb R217, the most potent, did not recognize sporozoites, 3-day hepatocyte stage parasites, nor rings, trophozoites, gametocytes, retorts, ookinetes, and oocysts but recognized 6-day hepatocyte stage parasites, and schizonts. Even though efficient at blocking binding to erythrocytes and inhibiting invasion into erythrocytes, MAb R217 did not inhibit sporozoite invasion and development in hepatocytes in vitro.

Conclusions

The role of the F1 and F2 domains in erythrocyte invasion and binding was elucidated with mAbs. These mAbs interfere with native EBA-175 binding to erythrocyte in a synergistic fashion. The stage specific expression of EBA-175 showed that the primary focus of activity was the merozoite stage. A recombinant RII protein vaccine consisting of both F1 and F2 domains that could induce synergistic activity should be optimal for induction of antibody responses that interfere with merozoite invasion of erythrocytes.  相似文献   
7.
The flagellar calcium-binding protein (FCaBP) of the flagellated protozoan Trypanosoma cruzi associates with the flagellar membrane via its N-terminal myristate and palmitate moieties in a calcium-modulated, conformation-dependent manner. This mechanism of localization is similar to that described for neuronal calcium sensors, which undergo calcium-dependent changes in conformation, which modulate the availability of the acyl groups for membrane interaction and partner association. To test whether FCaBP undergoes a calcium-dependent conformational change and to explore the role of such a change in flagellar targeting, we first introduced point mutations into each of the two EF-hand calcium-binding sites of FCaBP to define their affinities. Analysis of recombinant EF-3 mutant (E151Q), EF-4 mutant (E188Q), and double mutant proteins showed EF-3 to be the high affinity site (Kd approximately 9 microM) and EF-4 the low affinity site (Kd approximately 120 microM). These assignments also correlated with partial (E188Q), nearly complete (E151Q), and complete (E151Q,E188Q) disruption of calcium-induced conformational changes determined by NMR spectrometry. We next expressed the FCaBP E151Q mutant and the double mutant in T. cruzi epimastigotes. These transproteins localized to the flagellum, suggesting the existence of a calcium-dependent interaction of FCaBP that is independent of its intrinsic calcium binding capacity. Several proteins were identified by FCaBP affinity chromatography that interact with FCaBP in a calcium-dependent manner, but with differential dependence on calcium-binding by FCaBP. These findings may have broader implications for the calcium acyl switch mechanism of protein regulation.  相似文献   
8.
The flagellar calcium-binding protein (FCaBP) of the protozoan Trypanosoma cruzi is targeted to the flagellar membrane where it regulates flagellar function and assembly. As a first step toward understanding the Ca(2+)-induced conformational changes important for membrane-targeting, we report here the x-ray crystal structure of FCaBP in the Ca(2+)-free state determined at 2.2A resolution. The first 17 residues from the N terminus appear unstructured and solvent-exposed. Residues implicated in membrane targeting (Lys-19, Lys-22, and Lys-25) are flanked by an exposed N-terminal helix (residues 26-37), forming a patch of positive charge on the protein surface that may interact electrostatically with flagellar membrane targets. The four EF-hands in FCaBP each adopt a "closed conformation" similar to that seen in Ca(2+)-free calmodulin. The overall fold of FCaBP is closest to that of grancalcin and other members of the penta EF-hand superfamily. Unlike the dimeric penta EF-hand proteins, FCaBP lacks a fifth EF-hand and is monomeric. The unstructured N-terminal region of FCaBP suggests that its covalently attached myristoyl group at the N terminus may be solvent-exposed, in contrast to the highly sequestered myristoyl group seen in recoverin and GCAP1. NMR analysis demonstrates that the myristoyl group attached to FCaBP is indeed solvent-exposed in both the Ca(2+)-free and Ca(2+)-bound states, and myristoylation has no effect on protein structure and folding stability. We propose that exposed acyl groups at the N terminus may anchor FCaBP to the flagellar membrane and that Ca(2+)-induced conformational changes may control its binding to membrane-bound protein targets.  相似文献   
9.
In the past 20 years, inorganic fuel cells have been transformed from novelty devices to practical energy transfer-energy storage units. However, the advantage of the high operating efficiency afforded by these fuel cells is partially offset by (a) the limited viability and high cost of the catalysts, (b) the highly corrosive electrolytes, and (c) the elevated operating temperatures. The possibility exists to reduce some of these problems through the development of bioelectrochemical fuel cells. Such biological/electrochemical systems incorporate either microorganisms or enzymes as an active component within the specified electrode compartments. Recent studies with microorganisms as part of the anode compartment have been aimed at defining the mechanism of the observed electrochemical reactions. Recent investigations on the use of cell-free enzyme preparations in the electrode compartments have dealt primarily with developing methodology and defining mechanisms for enhancing the rate of electron transfer from the enzyme-cofactor active site to the solid electrode surface. Applications of this developing technology have been envisioned for analytical chemistry, medical devices, energy transfer, electrochemical synthesis, and detoxification. In this review, the theory and problems of bioelectrochemical fuel cells are described and related to research, both recent and proposed, for the practical development of this area.  相似文献   
10.
Phosphatidylinositol 3-kinase (PI3-kinase) activates protein kinase B (also known as Akt), which phosphorylates and activates a cyclic nucleotide phosphodiesterase 3B. Increases in cyclic nucleotide concentrations inhibit agonist-induced contraction of vascular smooth muscle. Thus we hypothesized that the PI3-kinase/Akt pathway may regulate vascular smooth muscle tone. In unstimulated, intact bovine carotid artery smooth muscle, the basal phosphorylation of Akt was higher than that in cultured smooth muscle cells. The phosphorylation of Akt decreases in a time-dependent manner when incubated with the PI3-kinase inhibitor, LY-294002. Agonist (serotonin)-, phorbol ester (phorbol 12,13-dibutyrate; PDBu)-, and depolarization (KCl)-induced contractions of vascular smooth muscles were all inhibited in a dose-dependent fashion by LY-294002. However, LY-294002 did not inhibit serotonin- or PDBu-induced increases in myosin light chain phosphorylation or total O(2) consumption, suggesting that inhibition of contraction was not mediated by reversal or inhibition of the pathways that lead to smooth muscle activation and contraction. Treatment of vascular smooth muscle with LY-294002 increased the activity of cAMP-dependent protein kinase and increased the phosphorylation of the cAMP-dependent protein kinase substrate heat shock protein 20 (HSP20). These data suggest that activation of the PI3-kinase/Akt pathway in unstimulated smooth muscle may modulate vascular smooth muscle tone (allow agonist-induced contraction) through inhibition of the cyclic nucleotide/HSP20 pathway and suggest that cyclic nucleotide-dependent inhibition of contraction is dissociated from the myosin light chain contractile regulatory pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号