首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   3篇
  2013年   3篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   3篇
  1963年   1篇
  1959年   8篇
  1958年   10篇
  1957年   10篇
  1956年   2篇
  1955年   10篇
  1954年   4篇
  1953年   2篇
  1952年   3篇
  1951年   5篇
  1950年   2篇
  1949年   3篇
  1948年   3篇
排序方式: 共有115条查询结果,搜索用时 93 毫秒
1.
Size-related changes in hydraulic architecture, carbon allocation and gas exchange of Sclerolobium paniculatum (Leguminosae), a dominant tree species in Neotropical savannas of central Brazil (Cerrado), were investigated to assess their potential role in the dieback of tall individuals. Trees greater than ∼6-m-tall exhibited more branch damage, larger numbers of dead individuals, higher wood density, greater leaf mass per area, lower leaf area to sapwood area ratio (LA/SA), lower stomatal conductance and lower net CO2 assimilation than small trees. Stem-specific hydraulic conductivity decreased, while leaf-specific hydraulic conductivity remained nearly constant, with increasing tree size because of lower LA/SA in larger trees. Leaves were substantially more vulnerable to embolism than stems. Large trees had lower maximum leaf hydraulic conductance ( K leaf) than small trees and all tree sizes exhibited lower K leaf at midday than at dawn. These size-related adjustments in hydraulic architecture and carbon allocation apparently incurred a large physiological cost: large trees received a lower return in carbon gain from their investment in stem and leaf biomass compared with small trees. Additionally, large trees may experience more severe water deficits in dry years due to lower capacity for buffering the effects of hydraulic path-length and soil water deficits.  相似文献   
2.
3.
4.
Midday depressions in stomatal conductance (gs) and photosynthesis are common in plants. The aim of this study was to understand the hydraulic determinants of midday gs, the coordination between leaf and stem hydraulics and whether regulation of midday gs differed between deciduous and evergreen broadleaf tree species in a subtropical cloud forest of Southwest (SW) China. We investigated leaf and stem hydraulics, midday leaf and stem water potentials, as well as midday gs of co‐occurring deciduous and evergreen tree species. Midday gs was correlated positively with midday stem water potential across both groups of species, but not with midday leaf water potential. Species with higher stem hydraulic conductivity and greater daily reliance on stem hydraulic capacitance were able to maintain higher stem water potential and higher gs at midday. Deciduous species exhibited significantly higher stem hydraulic conductivity, greater reliance on stem capacitance, higher stem water potential and gs at midday than evergreen species. Our results suggest that midday gs is more associated with midday stem than with leaf water status, and that the functional significance of stomatal regulation in these broadleaf tree species is probably for preventing stem xylem dysfunction.  相似文献   
5.
THE technique of somatic cell hybridization has opened up studies on genetic regulation1 and human genetic analysis2–5. Hybrid cells are isolated in conditions that select against parental cells while allowing hybrids to survive by genomic complementation. In xeroderma pigmentosum (XP), a human disease with an autosomal recessive defect in an early stage of DNA repair6, the skin is extremely sensitive to sunlight in vivo7 and skin fibroblasts show sharply reduced survival following ultraviolet irradiation in vitro8,9. This communication concerns the use of ultraviolet irradiation in combination with a chemical method to produce hybrids between fibroblasts from XP and a hamster line, followed by analysis of these cells for their capacity to survive and repair DNA after exposure to ultraviolet. Methods for initiation and propagation of skin fibroblasts from two subjects, male and female siblings with XP, have been described8. Details on the origin of the TG2 line of golden hamster fibroblasts, which has a non-reverting mutation in the gene for hypoxanthine-guanine phosphoribosyltransferase (HGPRT), the general hybridization procedure10 and methods for cell survival and DNA repair by unscheduled synthesis8 were also described previously. Hybrids were produced by fusion with Sendai virus and selected by ultraviolet irradiation followed by culture on HAT medium (Fig. 1).  相似文献   
6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号