首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  完全免费   8篇
  1993年   1篇
  1988年   1篇
  1985年   2篇
  1983年   1篇
  1981年   2篇
  1975年   1篇
  1974年   1篇
  1973年   4篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1959年   5篇
  1958年   2篇
  1957年   1篇
排序方式: 共有24条查询结果,搜索用时 78 毫秒
1.
2.
Cell-free studies on the regulation of the arabinose operon   总被引:17,自引:0,他引:17  
3.
4.
5.
6.
7.
Colicin synthesis and cell death.   总被引:6,自引:6,他引:0       下载免费PDF全文
Colicin E1 is a small plasmid, containing the cea gene for colicin, the most prominent product of the plasmid. Colicin is a 56-kilodalton bacteriocin which is especially toxic to Escherichia coli cells that do not contain the plasmid. Under normal growth conditions very low levels of the plasmid are produced as a result of cea gene repression by the host LexA protein. Conditions that lower the concentration of LexA protein result in elevated levels of colicin synthesis. The LexA protein concentration can be lowered by exposing the cells to DNA-damaging reagents such as UV light or mitomycin C. This is because DNA damage signals the host SOS response; the response leads to activation of the RecA protease which degrades the LexA protein. DNA-damaging reagents result in very high levels of colicin synthesis and subsequent death of plasmid-bearing cells. Elevated levels of colicin are also produced in mutants of E. coli that are deficient in LexA protein. We found that comparably high levels of colicin can be produced in such mutants in the absence of cell death. In lexA strains carrying a defective LexA repressor, colicin synthesis shows a strong temperature dependence. Ten to twenty times more colicin is synthesized at 42 degrees C. This sharp dependence of synthesis on temperature suggests that there are factors other than the LexA protein which regulate colicin synthesis.  相似文献
8.
The deoxyribonucleic acid (DNA) from Escherichia coli has been isolated as an extract containing about 50 per cent by weight protein. The protein component differs both in composition and chemical behaviour from histone which occurs in combination with the DNA in most cells of higher organisms. Although this result suggests the absence of histone-like protein, it is not clear whether the bacterial protein found is naturally bound to the bacterial DNA in the cell or becomes attached to the DNA during the course of isolation.  相似文献
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号