首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   5篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2004年   3篇
  2003年   3篇
  2001年   3篇
  2000年   4篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1969年   1篇
  1963年   1篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
1.
Brain fingerprinting (BF) detects concealed information stored in the brain by measuring brainwaves. A specific EEG event-related potential, a P300-MERMER, is elicited by stimuli that are significant in the present context. BF detects P300-MERMER responses to words/pictures relevant to a crime scene, terrorist training, bomb-making knowledge, etc. BF detects information by measuring cognitive information processing. BF does not detect lies, stress, or emotion. BF computes a determination of “information present” or “information absent” and a statistical confidence for each individual determination. Laboratory and field tests at the FBI, CIA, US Navy and elsewhere have resulted in 0% errors: no false positives and no false negatives. 100% of determinations made were correct. 3% of results have been “indeterminate.” BF has been applied in criminal cases and ruled admissible in court. Scientific standards for BF tests are discussed. Meeting the BF scientific standards is necessary for accuracy and validity. Alternative techniques that failed to meet the BF scientific standards produced low accuracy and susceptibility to countermeasures. BF is highly resistant to countermeasures. No one has beaten a BF test with countermeasures, despite a $100,000 reward for doing so. Principles of applying BF in the laboratory and the field are discussed.  相似文献   
2.
Stable isotope analysis (SIA) of highly migratory marine pelagic animals can improve understanding of their migratory patterns and trophic ecology. However, accurate interpretation of isotopic analyses relies on knowledge of isotope turnover rates and tissue-diet isotope discrimination factors. Laboratory-derived turnover rates and discrimination factors have been difficult to obtain due to the challenges of maintaining these species in captivity. We conducted a study to determine tissue- (white muscle and liver) and isotope- (nitrogen and carbon) specific turnover rates and trophic discrimination factors (TDFs) using archived tissues from captive Pacific bluefin tuna (PBFT), Thunnus orientalis, 1–2914 days after a diet shift in captivity. Half-life values for 15N turnover in white muscle and liver were 167 and 86 days, and for 13C were 255 and 162 days, respectively. TDFs for white muscle and liver were 1.9 and 1.1‰ for δ 15N and 1.8 and 1.2‰ for δ 13C, respectively. Our results demonstrate that turnover of 15N and 13C in bluefin tuna tissues is well described by a single compartment first-order kinetics model. We report variability in turnover rates between tissue types and their isotope dynamics, and hypothesize that metabolic processes play a large role in turnover of nitrogen and carbon in PBFT white muscle and liver tissues. 15N in white muscle tissue showed the most predictable change with diet over time, suggesting that white muscle δ 15N data may provide the most reliable inferences for diet and migration studies using stable isotopes in wild fish. These results allow more accurate interpretation of field data and dramatically improve our ability to use stable isotope data from wild tunas to better understand their migration patterns and trophic ecology.  相似文献   
3.
4.
5.
6.
Amyotrophic lateral sclerosis (ALS) is a progressive paralytic disorder caused by motor neuron degeneration. A similar disease phenotype is observed in mice overexpressing a mutant human hSOD1 gene (G93A, 1Gurd(1)). Mice transgenic for lacI (Big Blue) and human mutant (1Gurd(1), Mut hSOD1) or wild type (2Gur, Wt hSOD1) SOD1 genes were used to examine spontaneous mutation, oxidative DNA damage, and neurodegeneration in vivo. The frequency and pattern of spontaneous mutation were determined for forebrain (90% glia), cerebellum (90% neurons) and thymus from 5-month-old male mice. Mutation frequency is not elevated significantly and mutation pattern is unaltered in Mut hSOD1 mice compared to control mice. Mutation frequency is reduced significantly in the cerebellum of Wt hSOD1 mice (1.6x10(-5); P=0.0093; Fisher's Exact Test) compared to mice without a human transgene (2.7x10(-5)). Mutation pattern is unaltered. This first report of an endogenous factor that can reduce in vivo, the frequency of spontaneous mutation suggests potential strategies for lowering mutagenesis related to aging, neurodegeneration, and carcinogenesis.  相似文献   
7.
8.
9.
10.
Protein synthesis in vitro by Micrococcus luteus.   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号