首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   9篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2016年   6篇
  2015年   6篇
  2014年   6篇
  2013年   10篇
  2012年   18篇
  2011年   17篇
  2010年   12篇
  2009年   2篇
  2008年   6篇
  2007年   11篇
  2006年   10篇
  2005年   7篇
  2004年   7篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1997年   2篇
  1996年   1篇
  1982年   1篇
  1942年   1篇
  1938年   1篇
排序方式: 共有149条查询结果,搜索用时 109 毫秒
1.
2.
3.
Airway smooth muscle (ASM) cells express voltage-dependent Ca2+ channels, primarily of the L-subtype. These may play a role in excitation-contraction coupling of ASM, although other signaling pathways may also contribute: one of these includes Rho and its downstream effector molecule Rho-associated kinase (ROCK). Although voltage-dependent Ca2+ influx and Rho/ROCK signaling have traditionally been viewed as entirely separate pathways, recent evidence in vascular smooth muscle suggest differently. In this study, we monitored contractile activity (muscle baths) in bronchial and/or tracheal preparations from the pig, cow, and human, and further examined Rho and ROCK activities (Western blots and kinase assays) and cytosolic levels of Ca2+ (fluo 4-based fluorimetry) in porcine tracheal myocytes. KCl evoked substantial contractions that were suppressed in tracheal preparations by removal of external Ca2+ or using the selective L-type Ca2+ channel blocker nifedipine; porcine bronchial preparations were much less sensitive, and bovine bronchi were essentially unaffected by 1 microM nifedipine. Surprisingly, KCl-evoked contractions were also highly sensitive to two structurally different ROCK inhibitors: Y-27632 and HA-1077. Furthermore, the inhibitory effects of nifedipine and of the ROCK inhibitors were not additive. KCl also caused marked stimulation of Rho and ROCK activities, and both these changes were suppressed by nifedipine or by removal of external Ca2+. KCl-induced elevation of [Ca2+]i was not affected by Y-27632 but was reversed by NiCl2 or by BAPTA-AM. We conclude that KCl acts in part through stimulation of Rho and ROCK, possibly secondary to voltage-dependent Ca2+ influx.  相似文献   
4.
Structure–activity relationships of three related series of 4-phenylthiazol-5-ylacetic acids, derived from two hits emanating from a focused library obtained by in silico screening, have been explored as CRTH2 (chemoattractant receptor-homologous molecule expressed on Th2 cells) antagonists. Several compounds with double digit nanomolar binding affinity and full antagonistic efficacy for human CRTH2 receptor were obtained in all subclasses. The most potent compound was [2-(4-chloro-benzyl)-4-(4-phenoxy-phenyl)-thiazol-5-yl]acetic acid having an binding affinity of 3.7 nM and functional antagonistic effect of 66 nM in a BRET and 12 nM in a cAMP assay with no functional activity for the other PGD2 DP receptor (27 μM in cAMP).  相似文献   
5.
6.
Wheat contains three different classes of proteinaceous xylanase inhibitors (XIs), i.e. Triticum aestivum xylanase inhibitors (TAXIs) xylanase‐inhibiting proteins (XIPs), and thaumatin‐like xylanase inhibitors (TLXIs) which are believed to act as a defensive barrier against phytopathogenic attack. In the absence of relevant data in wheat kernels, we here examined the response of the different members of the XI protein population to infection with a ΔTri5 mutant of Fusarium graminearum, the wild type of which is one of the most important wheat ear pathogens, in early developing wheat grain. Wheat ears were inoculated at anthesis, analyzed using 2‐D DIGE and multivariate analysis at 5, 15, and 25 days post anthesis (DPA), and compared with control samples. Distinct abundance patterns could be distinguished for different XI forms in response to infection with F. graminearum ΔTri5. Some (iso)forms were up‐regulated, whereas others were down‐regulated. This pathogen‐specific regulation of proteins was mostly visible at five DPA and levelled off in the samples situated further from the inoculation point. Furthermore, it was shown that most identified TAXI‐ and XIP‐type XI (iso)forms significantly increased in abundance from the milky (15 DPA) to the soft dough stages (25 DPA) on a per kernel basis, although the extent of increase differed greatly. Non‐glycosylated XIP forms increased more strongly than their glycosylated counterparts.  相似文献   
7.
Agonist-induced contraction of airway smooth muscle (ASM) can be triggered by an elevation in the intracellular Ca(2+) concentration, primarily through the release of Ca(2+) from the sarcoplasmic reticulum (SR). The refilling of the SR is integral for subsequent contractions. It has been suggested that Ca(2+) entry via store-operated cation (SOC) and receptor-operated cation channels may facilitate refilling of the SR. Indeed, depletion of the SR activates substantial inward SOC currents in ASM that are composed of both Ca(2+) and Na(+). Accumulation of Na(+) within the cell may regulate Ca(2+) handling in ASM by forcing the Na(+)/Ca(2+) exchanger (NCX) into the reverse mode, leading to the influx of Ca(2+) from the extracellular domain. Since depletion of the SR activates substantial inward Na(+) current, it is conceivable that the reverse mode of the NCX may contribute to the intracellular Ca(2+) pool from which the SR is refilled. Indeed, successive contractions of bovine ASM, evoked by various agonists (ACh, histamine, 5-HT, caffeine) were significantly reduced upon removal of extracellular Na(+); whereas contractions evoked by KCl were unchanged by Na(+) depletion. Ouabain, a selective inhibitor of the Na(+)/K(+) pump, had no effect on the reductions observed under normal and zero-Na(+) conditions. KB-R7943, a selective inhibitor of the reverse mode of the NCX, significantly reduced successive contractions induced by all agonists without altering KCl responses. Furthermore, KB-R7943 abolished successive caffeine-induced Ca(2+) transients in single ASM cells. Together, these data suggest a role for the reverse mode of the NCX in refilling the SR in ASM following Ca(2+) mobilization.  相似文献   
8.
Positional stability of single double-strand breaks in mammalian cells   总被引:7,自引:0,他引:7  
Formation of cancerous translocations requires the illegitimate joining of chromosomes containing double-strand breaks (DSBs). It is unknown how broken chromosome ends find their translocation partners within the cell nucleus. Here, we have visualized and quantitatively analysed the dynamics of single DSBs in living mammalian cells. We demonstrate that broken ends are positionally stable and unable to roam the cell nucleus. Immobilization of broken chromosome ends requires the DNA-end binding protein Ku80, but is independent of DNA repair factors, H2AX, the MRN complex and the cohesion complex. DSBs preferentially undergo translocations with neighbouring chromosomes and loss of local positional constraint correlates with elevated genomic instability. These results support a contact-first model in which chromosome translocations predominantly form among spatially proximal DSBs.  相似文献   
9.
The directional migration of neutrophils towards inflammatory mediators, such as chemokines and cannabinoids, occurs via the activation of seven transmembrane G protein coupled receptors (7TM/GPCRs) and is a highly organized process. A crucial role for controlling neutrophil migration has been ascribed to the cannabinoid CB(2) receptor (CB(2)R), but additional modulatory sites distinct from CB(2)R have recently been suggested to impact CB(2)R-mediated effector functions in neutrophils. Here, we provide evidence that the recently de-orphanized 7TM/GPCR GPR55 potently modulates CB(2)R-mediated responses. We show that GPR55 is expressed in human blood neutrophils and its activation augments the migratory response towards the CB(2)R agonist 2-arachidonoylglycerol (2-AG), while inhibiting neutrophil degranulation and reactive oxygen species (ROS) production. Using HEK293 and HL60 cell lines, along with primary neutrophils, we show that GPR55 and CB(2)R interfere with each other's signaling pathways at the level of small GTPases, such as Rac2 and Cdc42. This ultimately leads to cellular polarization and efficient migration as well as abrogation of degranulation and ROS formation in neutrophils. Therefore, GPR55 limits the tissue-injuring inflammatory responses mediated by CB(2)R, while it synergizes with CB(2)R in recruiting neutrophils to sites of inflammation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号