首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   13篇
  2019年   1篇
  2016年   1篇
  2015年   5篇
  2014年   1篇
  2013年   9篇
  2012年   10篇
  2011年   4篇
  2010年   6篇
  2009年   7篇
  2008年   6篇
  2007年   5篇
  2006年   5篇
  2005年   7篇
  2004年   8篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   5篇
  1999年   6篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1988年   5篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   6篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1967年   2篇
  1966年   1篇
  1962年   1篇
  1961年   1篇
  1959年   1篇
  1957年   1篇
  1955年   1篇
排序方式: 共有149条查询结果,搜索用时 203 毫秒
1.
ZIP14 is a transmembrane metal ion transporter that is abundantly expressed in the liver, heart, and pancreas. Previous studies of HEK 293 cells and the hepatocyte cell lines AML12 and HepG2 established that ZIP14 mediates the uptake of non-transferrin-bound iron, a form of iron that appears in the plasma during pathologic iron overload. In this study we investigated the role of ZIP14 in the cellular assimilation of iron from transferrin, the circulating plasma protein that normally delivers iron to cells by receptor-mediated endocytosis. We also determined the subcellular localization of ZIP14 in HepG2 cells. We found that overexpression of ZIP14 in HEK 293T cells increased the assimilation of iron from transferrin without increasing levels of transferrin receptor 1 or the uptake of transferrin. To allow for highly specific and sensitive detection of endogenous ZIP14 in HepG2 cells, we used a targeted knock-in approach to generate a cell line expressing a FLAG-tagged ZIP14 allele. Confocal microscopic analysis of these cells detected ZIP14 at the plasma membrane and in endosomes containing internalized transferrin. HepG2 cells in which endogenous ZIP14 was suppressed by siRNA assimilated 50% less iron from transferrin compared with controls. The uptake of transferrin, however, was unaffected. We also found that ZIP14 can mediate the transport of iron at pH 6.5, the pH at which iron dissociates from transferrin within the endosome. These results suggest that endosomal ZIP14 participates in the cellular assimilation of iron from transferrin, thus identifying a potentially new role for ZIP14 in iron metabolism.  相似文献   
2.
When HL-60 cells are induced to differentiate by dimethyl sulfoxide along a granulocytic pathway there is a fivefold decrease in the total number of transferrin receptors within 3 days, as compared to untreated cells. This decrease is due primarily to a rapid decline in the synthesis of the receptor rather than an increase in the degradation of the receptor. The decrease in transferrin receptor synthesis is a specific and early event that precedes the cessation of cell proliferation, differentiation, and the decrease in total protein synthesis.  相似文献   
3.
E E McCoy  L Enns 《Life sciences》1980,26(8):603-606
Potassium uptake was studied in Down's syndrome (D.S.) platelets to determine if the Na+/K+ ATPase mediated movement of this ion was decreased compared to normal platelets. Total uptake of 42K was 1.58±0.16 μmoles/hr/109 normal platelets but was decreased to 1.06±0.06 μmoles/hr/109 D.S. platelets (p<.001). Na+/K+ ATPase mediated (ouabain sensitive) K+ uptake was 0.87±0.05 μmoles/hr/109 normal platelets but only 0.54±0.04 μmoles/hr/109 in D.S. platelets (p<.001). As the Na+/K+ ATPase mediated outward movement of Na+ is decreased in D.S. platelets, the present work demonstrates that bidirectional functional imparrment of the Na+/K+ ATPase pump is present in D.S. platelets.  相似文献   
4.

Context

Resilience is a capacity to face and overcome adversities, with personal transformation and growth. In medical education, it is critical to understand the determinants of a positive, developmental reaction in the face of stressful, emotionally demanding situations. We studied the association among resilience, quality of life (QoL) and educational environment perceptions in medical students.

Methods

We evaluated data from a random sample of 1,350 medical students from 22 Brazilian medical schools. Information from participants included the Wagnild and Young’s resilience scale (RS-14), the Dundee Ready Educational Environment Measure (DREEM), the World Health Organization Quality of Life questionnaire – short form (WHOQOL-BREF), the Beck Depression Inventory (BDI) and the State-Trait Anxiety Inventory (STAI).

Results

Full multiple linear regression models were adjusted for sex, age, year of medical course, presence of a BDI score ≥ 14 and STAI state or anxiety scores ≥ 50. Compared to those with very high resilience levels, individuals with very low resilience had worse QoL, measured by overall (β=-0.89; 95% confidence interval =-1.21 to -0.56) and medical-school related (β=-0.85; 95%CI=-1.25 to -0.45) QoL scores, environment (β=-6.48; 95%CI=-10.01 to -2.95), psychological (β=-22.89; 95%CI=-25.70 to -20.07), social relationships (β=-14.28; 95%CI=-19.07 to -9.49), and physical health (β=-10.74; 95%CI=-14.07 to -7.42) WHOQOL-BREF domain scores. They also had a worse educational environment perception, measured by global DREEM score (β=-31.42; 95%CI=-37.86 to -24.98), learning (β=-7.32; 95%CI=-9.23 to -5.41), teachers (β=-5.37; 95%CI=-7.16 to -3.58), academic self-perception (β=-7.33; 95%CI=-8.53 to -6.12), atmosphere (β=-8.29; 95%CI=-10.13 to -6.44) and social self-perception (β=-3.12; 95%CI=-4.11 to -2.12) DREEM domain scores. We also observed a dose-response pattern across resilience level groups for most measurements.

Conclusions

Medical students with higher resilience levels had a better quality of life and a better perception of educational environment. Developing resilience may become an important strategy to minimize emotional distress and enhance medical training.  相似文献   
5.
6.
Mutations that cause a reduction in protein kinase A (PKA) activity have been shown to extend lifespan in yeast. Loss of function of mammalian RIIβ, a regulatory subunit of PKA expressed in brain and adipose tissue, results in mice that are lean and insulin sensitive. It was therefore hypothesized that RIIB null (RIIβ−/−) mice would express anti-aging phenotypes. We conducted lifespan studies using 40 mutant and 40 wild type (WT) littermates of equal gender numbers and found that both the median and maximum lifespans were significantly increased in mutant males compared to WT littermates. The median lifespan was increased from 884 days to 1005 days (p = 0.006 as determined by the log rank test) and the 80% lifespan (defined here as 80% deaths) was increased from 941 days to 1073 days (p = 0.004 as determined by the Wang-Allison test). There was no difference in either median or 80% lifespan in female genotypes. WT mice of both genders became increasingly obese with age, while mutant mice maintained their lean phenotype into old age. Adiposity was found to correlate with lifespan for males only. 50% of male mice between 30 and 35 g, corresponding to about 5% body fat, for either genotype lived over 1000 days. No male mouse outside of this weight range achieved this lifespan. During their last month of life, WT mice began losing weight (a total of 8% and 15% of body weight was lost for males and females, respectively), but RIIβ−/− male mice maintained their lean body mass to end of life. This attenuation of decline was not seen in female mutant mice. Old male mutant mice were insulin sensitive throughout their life. Both genders showed modestly lower blood glucose levels in old mutants compared to WT. Male mutants were also resistant to age-induced fatty liver. Pathological assessment of tissues from end of life male mutant mice showed a decrease in tumor incidence, decreased severity of renal lesions, and a trend towards a decrease in age-related cardiac pathology. These findings help establish the highly conserved nature of PKA and suggest that disruption of PKA affects physiological mechanisms known to be associated with healthy aging.  相似文献   
7.
Transferrin receptor 2 (TfR2) is a homologue of transferrin receptor 1 (TfR1) but has distinct functions from TfR1 in iron homeostasis. In keeping with its proposed role in iron sensing, previous studies showed that TfR2 has a short half-life and that holo-Tf stabilizes TfR2 by redirecting it from a degradative pathway to a recycling pathway. In this study, we characterized how the endocytosis, recycling and degradation of TfR2 relates to its function and differs from TfR1. TfR2 endocytosis was adaptor protein-2 (AP-2) dependent. Flow cytometry analysis showed that TfR1 and TfR2 utilized the same endocytic pathway only in the presence of holo-Tf, indicating that holo-Tf alters the interaction of TfR2 with the endocytic machinery. Unlike TfR1, phosphofurin acidic cluster sorting protein 1 (PACS-1) binds to the cytoplasmic domain of TfR2 and data suggest that PACS-1 is involved in the TfR2 recycling. Depletion of TSG101 by siRNA or expression of a dominant negative Vps4 inhibited TfR2 degradation, indicating that TfR2 degradation occurs through a multivesicular body (MVB) pathway. TfR2 degradation is not mediated through ubiquitination on the single lysine (K31) in the cytoplasmic domain or on the amino terminal residue. No ubiquitination of TfR2 by HA-ubiquitin was detected, indicating a lack of direct TfR2 ubiquitination involvement in its degradation.  相似文献   
8.
The self-assembly of hybrid diblock copolymers composed of poly(HPMA) and beta-sheet peptide P11 (CH(3)CO-QQRFQWQFEQQ-NH(2)) blocks was investigated. Copolymers were synthesized via thiol-maleimide coupling reaction, by conjugation of semitelechelic poly(HPMA)-SH with maleimide-modified beta-sheet peptide. As expected, CD and CR binding studies showed that the peptide block imposed its beta-sheet structural arrangement on the structure of diblock copolymers. TEM and AFM proved that peptide and these copolymers had the ability to self-assemble into fibrils.  相似文献   
9.
Previous studies have shown that the small molecule iron transport inhibitor ferristatin (NSC30611) acts by down-regulating transferrin receptor-1 (TfR1) via receptor degradation. In this investigation, we show that another small molecule, ferristatin II (NSC8679), acts in a similar manner to degrade the receptor through a nystatin-sensitive lipid raft pathway. Structural domains of the receptor necessary for interactions with the clathrin pathway do not appear to be necessary for ferristatin II induced degradation of TfR1. While TfR1 constitutively traffics through clathrin-mediated endocytosis, with or without ligand, the presence of Tf blocked ferristatin II induced degradation of TfR1. This effect of Tf was lost in a ligand binding receptor mutant G647A TfR1, suggesting that Tf binding to its receptor interferes with the drug’s activity. Rats treated with ferristatin II have lower TfR1 in liver. These effects are associated with reduced intestinal 59Fe uptake, lower serum iron and transferrin saturation, but no change in liver non-heme iron stores. The observed hypoferremia promoted by degradation of TfR1 by ferristatin II appears to be due to induced hepcidin gene expression.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号