首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3136篇
  免费   211篇
  2023年   25篇
  2022年   13篇
  2021年   97篇
  2020年   59篇
  2019年   73篇
  2018年   103篇
  2017年   92篇
  2016年   123篇
  2015年   212篇
  2014年   209篇
  2013年   268篇
  2012年   313篇
  2011年   298篇
  2010年   192篇
  2009年   160篇
  2008年   199篇
  2007年   174篇
  2006年   149篇
  2005年   134篇
  2004年   122篇
  2003年   88篇
  2002年   58篇
  2001年   12篇
  2000年   16篇
  1999年   19篇
  1998年   18篇
  1997年   16篇
  1996年   9篇
  1995年   3篇
  1994年   14篇
  1993年   10篇
  1992年   12篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   6篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1973年   1篇
  1969年   2篇
  1956年   1篇
  1938年   1篇
排序方式: 共有3347条查询结果,搜索用时 250 毫秒
1.
α-Synuclein (α-syn) amyloid filaments are the major ultrastructural component of pathological inclusions that define several neurodegenerative disorders, including Parkinson disease and other disorders that are collectively termed synucleinopathies. Since the aggregation of α-syn is associated with the etiology of these diseases, defining the molecular elements that influence this process may have important therapeutics implication. The deletions of major portions of the hydrophobic region of α-syn (Δ74-79 and Δ71-82) impair the ability to form amyloid. However, mutating residue E83 to an A restored the ability of these proteins to form amyloid. Additionally supporting an inhibitory role of residue E83 on amyloid formation, mutating this residue to an A enhanced amyloid formation in the presence of small molecule inhibitors, such as dopamine and EGCG. Our data, therefore, suggest that the presence and placement of the highly charged E83 residue plays a significant inhibitory role in α-syn amyloid formation and these findings provide important insights in the planning of therapeutic agents that may be capable of preventing α-syn amyloid formation.  相似文献   
2.
The different modes of stem cell division are tightly regulated to balance growth and differentiation during organ development and homeostasis. However, the mechanisms controlling such events are not fully understood. We have developed markers that provide the single cell resolution necessary to identify the three modes of division occurring in a developing nervous system: self-expanding, self-renewing, and self-consuming. Characterizing these three modes of division during interneuron generation in the developing chick spinal cord, we demonstrated that they correlate to different levels of activity of the canonical bone morphogenetic protein effectors SMAD1/5. Functional in vivo experiments showed that the premature neuronal differentiation and changes in cell cycle parameters caused by SMAD1/5 inhibition were preceded by a reduction of self-expanding divisions in favor of self-consuming divisions. Conversely, SMAD1/5 gain of function promoted self-expanding divisions. Together, these results lead us to propose that the strength of SMAD1/5 activity dictates the mode of stem cell division during spinal interneuron generation.  相似文献   
3.
Focused Ultrasound (FUS) coupled with intravenous administration of microbubbles (MB) is a non-invasive technique that has been shown to reliably open (increase the permeability of) the blood-brain barrier (BBB) in multiple in vivo models including non-human primates (NHP). This procedure has shown promise for clinical and basic science applications, yet the safety and potential neurological effects of long term application in NHP requires further investigation under parameters shown to be efficacious in that species (500kHz, 200–400 kPa, 4–5μm MB, 2 minute sonication). In this study, we repeatedly opened the BBB in the caudate and putamen regions of the basal ganglia of 4 NHP using FUS with systemically-administered MB over 4–20 months. We assessed the safety of the FUS with MB procedure using MRI to detect edema or hemorrhaging in the brain. Contrast enhanced T1-weighted MRI sequences showed a 98% success rate for openings in the targeted regions. T2-weighted and SWI sequences indicated a lack edema in the majority of the cases. We investigated potential neurological effects of the FUS with MB procedure through quantitative cognitive testing of’ visual, cognitive, motivational, and motor function using a random dot motion task with reward magnitude bias presented on a touchpanel display. Reaction times during the task significantly increased on the day of the FUS with MB procedure. This increase returned to baseline within 4–5 days after the procedure. Visual motion discrimination thresholds were unaffected. Our results indicate FUS with MB can be a safe method for repeated opening of the BBB at the basal ganglia in NHP for up to 20 months without any long-term negative physiological or neurological effects with the parameters used.  相似文献   
4.
5.
The combined effect of ocean acidification and warming is expected to have significant effects on several traits of marine organisms. The gastropod Concholepas concholepas is a rocky shore keystone predator characteristic of the south-eastern Pacific coast of South America and an important natural resource exploited by small-scale artisanal fishermen along the coast of Chile and Peru. In this study, we used small juveniles of C. concholepas collected from the rocky intertidal habitats of southern Chile (39°S) to evaluate under laboratory conditions the potential consequences of projected near-future levels of ocean acidification and warming for important early ontogenetic traits. The individuals were exposed long-term (5.8 months) to contrasting pCO2 (ca. 500 and 1400 μatm) and temperature (15 and 19°C) levels. After this period we compared body growth traits, dislodgement resistance, predator-escape response, self-righting and metabolic rates. With respect to these traits there was no evidence of a synergistic interaction between pCO2 and temperature. Shell growth was negatively affected by high pCO2 levels only at 15°C. High pCO2 levels also had a negative effect on the predator-escape response. Conversely, dislodgement resistance and self-righting were positively affected by high pCO2 levels at both temperatures. High tenacity and fast self-righting would reduce predation risk in nature and might compensate for the negative effects of high pCO2 levels on other important defensive traits such as shell size and escape behaviour. We conclude that climate change might produce in C. concholepas positive and negative effects in physiology and behaviour. In fact, some of the behavioural responses might be a consequence of physiological effects, such as changes in chemosensory capacity (e.g. predator-escape response) or secretion of adhesive mucous (e.g. dislodgement resistance). Moreover, we conclude that positive behavioural responses may assist in the adaptation to negative physiological impacts, and that this may also be the case for other benthic organisms.  相似文献   
6.
Summary Clonal populations were isolated from the mouse mammary cell line, COMMA-D, by transfection with a dominant-selectable gene, pSV2Neo, which confers resistance to the antibiotic, G418. Seven of twenty-four clones isolated retained the ability of the parental line to repopulate cleared mammary fat pads in vivo as ductal-alveolar hyperplasias. Two sublines designated CDNR2 and CDNR4 retained hyperplastic growth potential after multiple passages in vitro with low incidence of tumor formation. A third subpopulation, CDNR1, contained a single integration site for the pSV2Neo plasmid indicating a bonafide clonal origin for this subline. CDNR1 cells displayed heterogeneous growth phenotypes in vivo including hyperplasia, adenocarcinoma, and bone formation. Functional differentiation of CDNR1 cells organized as alveolarlike structures in vivo or on floating collagen gels in vitro was observed as determined by immunoperoxidase staining for the milk-specific protein, casein. Overall, the results indicate that a subset of cells from the COMMA-D cell line may be functionally analogous to stem cells existing in the mammary gland. Supported by NCI research grants CA-38650, CA-33369, CA-39017, and CA-25215.  相似文献   
7.
8.
The removal of the 5′-cap structure by the decapping enzyme DCP2 and its coactivator DCP1 shuts down translation and exposes the mRNA to 5′-to-3′ exonucleolytic degradation by XRN1. Although yeast DCP1 and DCP2 directly interact, an additional factor, EDC4, promotes DCP1–DCP2 association in metazoan. Here, we elucidate how the human proteins interact to assemble an active decapping complex and how decapped mRNAs are handed over to XRN1. We show that EDC4 serves as a scaffold for complex assembly, providing binding sites for DCP1, DCP2 and XRN1. DCP2 and XRN1 bind simultaneously to the EDC4 C-terminal domain through short linear motifs (SLiMs). Additionally, DCP1 and DCP2 form direct but weak interactions that are facilitated by EDC4. Mutational and functional studies indicate that the docking of DCP1 and DCP2 on the EDC4 scaffold is a critical step for mRNA decapping in vivo. They also revealed a crucial role for a conserved asparagine–arginine containing loop (the NR-loop) in the DCP1 EVH1 domain in DCP2 activation. Our data indicate that DCP2 activation by DCP1 occurs preferentially on the EDC4 scaffold, which may serve to couple DCP2 activation by DCP1 with 5′-to-3′ mRNA degradation by XRN1 in human cells.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号