首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   3篇
  2021年   1篇
  2019年   3篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   7篇
  2011年   8篇
  2010年   6篇
  2009年   6篇
  2008年   8篇
  2007年   4篇
  2006年   10篇
  2005年   4篇
  2004年   5篇
  2003年   4篇
  2002年   4篇
  2000年   1篇
  1994年   1篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
1.
The size of various tubes within tubular organs such as the lung, vascular system and kidney must be finely tuned for the optimal delivery of gases, nutrients, waste and cells within the entire organism. Aberrant tube sizes lead to devastating human illnesses, such as polycystic kidney disease, fibrocystic breast disease, pancreatic cystic neoplasm and thyroid nodules. However, the underlying mechanisms that are responsible for tube-size regulation have yet to be fully understood. Therefore, no effective treatments are available for disorders caused by tube-size defects. Recently, the Drosophila tracheal system has emerged as an excellent in vivo model to explore the fundamental mechanisms of tube-size regulation. Here, we discuss the role of the apical luminal matrix, cell polarity and signaling pathways in regulating tube size in Drosophila trachea. Previous studies of the Drosophila tracheal system have provided general insights into epithelial tube morphogenesis. Mechanisms that regulate tube size in Drosophila trachea could be well conserved in mammalian tubular organs. This knowledge should greatly aid our understanding of tubular organogenesis in vertebrates and potentially lead to new avenues for the treatment of human disease caused by tube-size defects.  相似文献   
2.
Mustard (Brassica and Sinapis spp.) green manures tilled into the soil preceding potato crops act as bio-fumigants that are toxic to plant–parasitic nematodes, providing an alternative to synthetic soil fumigants. However, it is not known whether mustard green manures also kill beneficial entomopathogenic nematodes (EPNs) that contribute to the control of pest insects. We used sentinel insect prey (Galleria mellonella larvae) to measure EPN infectivity in Washington State (USA) potato fields that did or did not utilize mustard green manures. We found a trend toward lower rates of EPN infection in fields, where mustard green manures were applied, compared to those not receiving this cultural control method. In a series of bioassays we then tested whether the application of two mustard (Brassica juncea) cultivars, differing in glucosinolate levels, disrupted the abilities of a diverse group of EPN species to infect insect hosts. Mustard-exposure trials were conducted first in laboratory arenas where EPNs were exposed to mustard extracts suspended in water, and then in larger microcosms in the greenhouse where EPNs were exposed to green manure grown, chopped, and incorporated into field soil. In all trials we used G. mellonella larvae as hosts and included multiple EPN species in the genera Steinernema (Steinernema carpocapsae, Steinernema feltiae, Steinernema glaseri, and Steinernema riobrave) and Heterorhabditis (Heterorhabditis bacteriophora, Heterorhabditis marelatus, and Heterorhabditis megidis). In the laboratory, EPN infection rates were lower in arenas receiving mustard extracts than the control (water), and lower still when EPNs were exposed to extracts from plants with high versus low glucosinolate levels. Results were nearly identical when mustard foliage was soil-incorporated into greenhouse microcosms, except that the negative effects of mustards on EPNs developed more slowly in soil. Significantly, in arenas of both types one EPN species, S. feltiae, appeared to be relatively unaffected by mustard exposure. Together, our results suggest that the use of mustard bio-fumigants for the control of plant–parasitic nematodes has the potential to interfere with the biocontrol of insect pests using EPNs. Thus, it may be difficult to combine these two approaches in integrated pest management programs.  相似文献   
3.
4.
Chloramphenicol (CAM) is a broad-spectrum antibiotic, limited to occasional only use in developed countries because of its potential toxicity. To explore the influence of polyamines on the uptake and activity of CAM into cells, a series of polyamine–CAM conjugates were synthesized. Both polyamine architecture and the position of CAM-scaffold substitution were crucial in augmenting the antibacterial and anticancer potency of the synthesized conjugates. Compounds 4 and 5, prepared by replacement of dichloro-acetyl group of CAM with succinic acid attached to N4 and N1 positions of N8,N8-dibenzylspermidine, respectively, exhibited higher activity than CAM in inhibiting the puromycin reaction in a bacterial cell-free system. Kinetic and footprinting analysis revealed that whereas the CAM-scaffold preserved its role in competing with the binding of aminoacyl-tRNA 3′-terminus to ribosomal A-site, the polyamine-tail could interfere with the rotatory motion of aminoacyl-tRNA 3′-terminus toward the P-site. Compared to CAM, compounds 4 and 5 exhibited comparable or improved antibacterial activity, particularly against CAM-resistant strains. Compound 4 also possessed enhanced toxicity against human cancer cells, and lower toxicity against healthy human cells. Thus, the designed conjugates proved to be suitable tools in investigating the ribosomal catalytic center plasticity and some of them exhibited greater efficacy than CAM itself.  相似文献   
5.
6.
Escherichia coli is exposed to wide extracellular concentrations of Ca2+, whereas the cytosolic levels of the ion are subject to stringent control and are implicated in many physiological functions. The present study shows that extracellular Ca2+ controls cPHB [complexed poly-(R)-3-hydroxybutyrate] biosynthesis through the AtoS-AtoC two-component system. Maximal cPHB accumulation was observed at higher [Ca2+]e (extracellular Ca2+ concentration) in AtoS-AtoC-expressing E. coli compared with their DeltaatoSC counterparts, in both cytosolic and membrane fractions. The reversal of EGTA-mediated down-regulation of cPHB biosynthesis by the addition of Ca2+ and Mg2+ was under the control of the AtoS-AtoC system. Moreover, the Ca2+-channel blocker verapamil reduced total and membrane-bound cPHB levels, the inhibitory effect being circumvented by Ca2+ addition only in atoSC+ bacteria. Histamine and compound 48/80 affected cPHB accumulation in a [Ca2+]e-dependent manner directed by the AtoS-AtoC system. In conclusion, these data provide evidence for the involvement of external Ca2+ on cPHB synthesis regulated by the AtoS-AtoC two-component system, thus linking Ca2+ with a signal transduction system, most probably through a transporter.  相似文献   
7.

Background

The Flinders model is a validated genetic rat model of depression that exhibits a number of behavioural, neurochemical and pharmacological features consistent with those observed in human depression.

Principal Findings

In this study we have used genome-wide microarray expression profiling of the hippocampus and prefrontal/frontal cortex of Flinders Depression Sensitive (FSL) and control Flinders Depression Resistant (FRL) lines to understand molecular basis for the differences between the two lines. We profiled two independent cohorts of Flinders animals derived from the same colony six months apart, each cohort statistically powered to allow independent as well as combined analysis. Using this approach, we were able to validate using real-time-PCR a core set of gene expression differences that showed statistical significance in each of the temporally distinct cohorts, representing consistently maintained features of the model. Small but statistically significant increases were confirmed for cholinergic (chrm2, chrna7) and serotonergic receptors (Htr1a, Htr2a) in FSL rats consistent with known neurochemical changes in the model. Much larger gene changes were validated in a number of novel genes as exemplified by TMEM176A, which showed 35-fold enrichment in the cortex and 30-fold enrichment in hippocampus of FRL animals relative to FSL.

Conclusions

These data provide significant insights into the molecular differences underlying the Flinders model, and have potential relevance to broader depression research.  相似文献   
8.
9.
Inflammatory bone diseases are characterized by the presence of pro-inflammatory cytokines that regulate bone turnover. Osteoprotegerin (OPG) is a soluble osteoblast-derived protein that influences bone resorption by inhibiting osteoclast differentiation and activation. In the present study, we demonstrate that interleukin-1beta and tumor necrosis factor alpha induce OPG mRNA production and OPG secretion by osteoblast-like MG-63 cells. Maximum induction of OPG secretion by either cytokine requires activation of the p38 mitogen activated protein kinase (MAPK) pathway but neither the p42/p44 (ERK) nor the c-Jun N-terminal MAPK pathways. Induction of OPG mRNA by either cytokine is also p38 MAPK dependent. Taken together, these data indicate that cytokine-induced OPG gene expression and protein secretion are differentially regulated by specific MAP kinase signal transduction pathways.  相似文献   
10.
BACKGROUND: Tardive dyskinesia (TD) is a major limitation of older antipsychotics. Newer antipsychotics have various other side effects such as weight gain, hyperglycemia, etc. In a previous study we have shown that an indolamine molecule expresses a moderate binding affinity at the dopamine D2 and serotonin 5-HT1A receptors in in vitro competition binding assays. In the present work, we tested its p-toluenesulfonyl derivative (TPBIA) for behavioral effects in rats, related to interactions with central dopamine receptors and its antioxidant activity. METHODS: Adult male Fischer-344 rats grouped as: i) Untreated rats: TPBIA was administered i.p. in various doses ii) Apomorphine-treated rats: were treated with apomorphine (1 mg kg-1, i.p.) 10 min after the administration of TPBIA. Afterwards the rats were placed individually in the activity cage and their motor behaviour was recorded for the next 30 min The antioxidant potential of TPBIA was investigated in the model of in vitro non enzymatic lipid peroxidation. RESULTS: i) In non-pretreated rats, TPBIA reduces the activity by 39 and 82% respectively, ii) In apomorphine pretreated rats, TPBIA reverses the hyperactivity and stereotype behaviour induced by apomorphine. Also TPBIA completely inhibits the peroxidation of rat liver microsome preparations at concentrations of 0.5, 0.25 and 0.1 mM. CONCLUSION: TPBIA exerts dopamine antagonistic activity in the central nervous system. In addition, its antioxidant effect is a desirable property, since TD has been partially attributed, to oxidative stress. Further research is needed to test whether TPBIA may be used as an antipsychotic agent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号