首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   9篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   6篇
  2013年   15篇
  2012年   12篇
  2011年   16篇
  2010年   4篇
  2009年   6篇
  2008年   12篇
  2007年   9篇
  2006年   5篇
  2005年   6篇
  2004年   6篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  1998年   1篇
  1996年   2篇
排序方式: 共有123条查询结果,搜索用时 31 毫秒
1.

Aim

To characterise changes in pancreatic beta cell mass during the development of diabetes in untreated male C57BLKS/J db/db mice.

Methods

Blood samples were collected from a total of 72 untreated male db/db mice aged 5, 6, 8, 10, 12, 14, 18, 24 and 34 weeks, for measurement of terminal blood glucose, HbA1c, plasma insulin, and C-peptide. Pancreata were removed for quantification of beta cell mass, islet numbers as well as proliferation and apoptosis by immunohistochemistry and stereology.

Results

Total pancreatic beta cell mass increased significantly from 2.1 ± 0.3 mg in mice aged 5 weeks to a peak value of 4.84 ± 0.26 mg (P < 0.05) in 12-week-old mice, then gradually decreased to 3.27 ± 0.44 mg in mice aged 34 weeks. Analysis of islets in the 5-, 10-, and 24-week age groups showed increased beta cell proliferation in the 10-week-old animals whereas a low proliferation is seen in older animals. The expansion in beta cell mass was driven by an increase in mean islet mass as the total number of islets was unchanged in the three groups.

Conclusions/Interpretation

The age-dependent beta cell dynamics in male db/db mice has been described from 5-34 weeks of age and at the same time alterations in insulin/glucose homeostasis were assessed. High beta cell proliferation and increased beta cell mass occur in young animals followed by a gradual decline characterised by a low beta cell proliferation in older animals. The expansion of beta cell mass was caused by an increase in mean islet mass and not islet number.  相似文献   
2.

Context

Early identification of Bipolar Disorder (BD) remains poor despite the high levels of disability associated with the disorder.

Objective

We developed and evaluated a new DSM orientated scale for the identification of young people at risk for BD based on the Child Behavior Checklist (CBCL) and compared its performance against the CBCL-Pediatric Bipolar Disorder (CBCL-PBD) and the CBCL-Externalizing Scale, the two most widely used scales.

Methods

The new scale, CBCL-Mania Scale (CBCL-MS), comprises 19 CBCL items that directly correspond to operational criteria for mania. We tested the reliability, longitudinal stability and diagnostic accuracy of the CBCL-MS on data from the TRacking Adolescents'' Individual Lives Survey (TRAILS), a prospective epidemiological cohort study of 2230 Dutch youths assessed with the CBCL at ages 11, 13 and 16. At age 19 lifetime psychiatric diagnoses were ascertained with the Composite International Diagnostic Interview. We compared the predictive ability of the CBCL-MS against the CBCL-Externalising Scale and the CBCL-PBD in the TRAILS sample.

Results

The CBCL-MS had high internal consistency and satisfactory accuracy (area under the curve = 0.64) in this general population sample. Principal Component Analyses, followed by parallel analyses and confirmatory factor analyses, identified four factors corresponding to distractibility/disinhibition, psychosis, increased libido and disrupted sleep. This factor structure remained stable across all assessment ages. Logistic regression analyses showed that the CBCL-MS had significantly higher predictive ability than both the other scales.

Conclusions

Our data demonstrate that the CBCL-MS is a promising screening instrument for BD. The factor structure of the CBCL-MS showed remarkable temporal stability between late childhood and early adulthood suggesting that it maps on to meaningful developmental dimensions of liability to BD.  相似文献   
3.
Gliomas are common and lethal tumors of the central nervous system (CNS). Genetic alterations, inflammatory and angiogenic processes have been identified throughout tumor progression; however, treatment still remains palliative for most cases. Biological research on parameters influencing cell survival, invasion and tumor heterogeneity identified several cytokines interfering in CNS inflammation, oxidative stress and malignant transformation, including TNF-superfamily (TNFSF) members. In this report we performed a meta-analysis of public gene-array data on the expression of a group of TNFSF ligands (BAFF, APRIL, TWEAK) and their receptors (BAFF-R, TACI, BCMA, Fn14) in gliomas. In addition, we investigated by immunohistochemistry (IHC) the tumor cells'' expression of these ligands and receptors in a series of 56 gliomas of different grade. We show that in IHC, BAFF and APRIL as well as their cognate receptors (BCMA, TACI) and Fn14 expression correlate with tumor grade. This result was not evidenced in micro-arrays meta-analysis. Finally, we detected for the first time Fn14, BAFF, BCMA and TACI in glioma-related vascular endothelium. Our data, combined with our previous report in glioma cell lines, suggest a role for these receptors and ligands in glioma biology and advance these molecules as potential markers for the classification of these tumors to the proliferative, angiogenic or stem-like molecular subtype.  相似文献   
4.
Objective : Although obesity is typically associated with increased cardiovascular risk, a subset of obese individuals display a normal metabolic profile (“metabolically healthy obese,” MHO) and conversely, a subset of nonobese subjects present with obesity‐associated cardiometabolic abnormalities (“metabolically obese nonobese,” MONO). The aim of this cross‐sectional study was to identify the most important body composition determinants of metabolic phenotypes of obesity in nonobese and obese healthy postmenopausal women. Design and Methods : We studied a total of 150 postmenopausal women (age 54 ± 7 years, mean ± 1 SD). Based on a cardiometabolic risk score, nonobese (body mass index [BMI] ≤ 27) and obese women (BMI > 27) were classified into “metabolically healthy” and “unhealthy” phenotypes. Total and regional body composition was assessed with dual‐energy X‐ray absorptiometry (DXA). Results : In both obese and nonobese groups, the “unhealthy” phenotypes were characterized by frequent bodyweight fluctuations, higher biochemical markers of insulin resistance, hepatic steatosis and inflammation, and higher anthropometric and DXA‐derived indices of central adiposity, compared with “healthy” phenotypes. Indices of total adiposity, peripheral fat distribution and lean body mass were not significantly different between “healthy” and “unhealthy” phenotypes. Despite having increased fat mass, MHO women exhibited comparable cardiometabolic parameters with healthy nonobese, and better glucose and lipid levels than MONO. Two DXA‐derived indices, trunk‐to‐legs and abdominal‐to‐gluteofemoral fat ratio were the major independent determinants of the “unhealthy” phenotypes in our cohort. Conclusions : The “metabolically obese phenotype” is associated with bodyweight variability, multiple cardiometabolic abnormalities and an excess of central relative to peripheral fat in postmenopausal women. DXA‐derived centrality ratios can discriminate effectively between metabolic subtypes of obesity in menopause.  相似文献   
5.
6.
Nanostructured agglomerated vesicles encapsulating ciprofloxacin were evaluated for modulated delivery from the lungs in a healthy rabbit model. An aliphatic disulfide crosslinker, cleavable by cysteine was used to form cross-links between nanosized liposomes to form the agglomerates. The blood levels of drug after pulmonary instillation of free ciprofloxacin, liposomal ciprofloxacin, and the agglomerated liposomes encapsulating ciprofloxacin were evaluated. The liposomes and agglomerated vesicles showed extended release of drug into the blood over 24 hours, while the free ciprofloxacin did not. The agglomerates also allowed modulation of the drug release rate upon the introduction of cysteine into the lungs post-drug instillation; the cysteine-cleavable agglomerates accelerated their drug release rate, indicated by an increased level of drug in the blood. This technology holds promise for the post-administration modulation of antibiotic release, for the prevention and treatment of pulmonary and systemic infections.  相似文献   
7.
Localizing the self in time is fundamental for daily life functioning and is lacking in severe disabling neuropsychiatric disorders like schizophrenia. Brains keep track of time across an impressive range of scales. Great progress has been made in identifying the molecular machinery of the circadian clock, the brain's master clock that operates on the 24-hour scale and allows animals to know the "time of the day" that important events occur, without referring to external cues. However, the biology of interval timing, the mechanism responsible for durations in the seconds-to-minutes-to-hours range, remains a mystery, and an obvious question is whether there is a common biological solution for keeping track of time across these 2 time scales. To address this, we trained Cry1/Cry2 double knockout mice on an interval timing task with durations that ranged between 3 and 27 seconds. The mice were kept under constant light conditions to avoid any exogenously induced form of daily rhythmicity. We observed that the homozygous knockouts displayed as accurate and precise a temporal memory as the control mice. This suggests that the Cry1 and Cry2 genes are not an important component of the interval timer. Furthermore, proper calibration of the interval timer does not depend on a functional circadian clock. Thus, these 2 timing systems likely rely on different and independent biological mechanisms.  相似文献   
8.
p53 regulates several biological processes, including senescence. Its protein stability is regulated by ubiquitination and proteasomal degradation, mainly mediated by Mdm2. However, other E3 ligases have been identified, such as the chaperone-associated ligase CHIP, although their precise function regarding p53 degradation remains elusive. Interestingly, CHIP deficiency has been recently shown to result in accelerated aging in mice, although the molecular basis of this phenotype was not completely understood. In this study, we explore the role of CHIP in regulating p53 in senescence. We demonstrate that in senescent human fibroblasts, CHIP is up-regulated concomitant with a significant down-regulation of p53. Moreover, CHIP partially translocates to the nucleus and acquires higher ubiquitination levels in senescent cells. Notably, CHIP overexpression in young cells, to levels similar to those recorded during senescence, leads to p53 degradation to below its basal levels. In addition, whereas CHIP silencing has no effect on p53 stability in young cells, a considerable p53 accumulation occurs in their senescent counterparts. Finally, we have observed an attenuation of the CHIP-associated molecular folding-refolding machinery during senescence, and supportively, inhibition of Hsp90 activity leads to rapid p53 degradation only in senescent cells. Taking these results together, we conclude that CHIP-dependent p53 regulation occurs specifically during senescence.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号