首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   14篇
  国内免费   6篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   1篇
  2012年   4篇
  2011年   4篇
  2010年   1篇
  2008年   2篇
  2007年   6篇
  2006年   5篇
  2005年   3篇
  2004年   6篇
  2003年   6篇
  2002年   3篇
  2000年   2篇
  1999年   5篇
  1996年   2篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   2篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1977年   1篇
  1976年   2篇
  1975年   4篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1969年   2篇
  1968年   1篇
  1961年   1篇
  1956年   5篇
  1955年   2篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
1.
2.
3.
TOL plasmid pWW0 specifies enzymes for the oxidative catabolism of toluene and xylenes. The upper pathway converts the aromatic hydrocarbons to aromatic carboxylic acids via corresponding alcohols and aldehydes and involves three enzymes: xylene oxygenase, benzyl alcohol dehydrogenase, and benzaldehyde dehydrogenase. The synthesis of these enzymes is positively regulated by the product of xylR. Determination of upper pathway enzyme levels in bacteria carrying Tn5 insertion mutant derivatives of plasmid pWW0-161 has shown that the genes for upper pathway enzymes are organized in an operon with the following order: promoter-xylC (benzaldehyde dehydrogenase gene[s])-xylA (xylene oxygenase gene[s])-xylB (benzyl alcohol dehydrogenase gene). Subcloning of the upper pathway genes in a lambda pL promoter-containing vector and analysis of their expression in Escherichia coli K-12 confirmed this order. Two distinct enzymes were found to attack benzyl alcohol, namely, xylene oxygenase and benzyl alcohol dehydrogenase; and their catalytic activities were additive in the conversion of benzyl alcohol to benzaldehyde. The fact that benzyl alcohol is both a product and a substrate of xylene oxygenase indicates that this enzyme has a relaxed substrate specificity.  相似文献   
4.
We constructed plasmids encoding the sequences for the bZip modules of c-Jun and c-Fos which could then be expressed as soluble proteins in Escherichia coli. The purified bZip modules were tested for their binding capacities of synthetic oligonucleotides containing either TRE or CRE recognition sites in electrophoretic mobility shift assays and circular dichroism (CD). Electrophoretic mobility shift assays showed that bZip Jun homodimers and bZip Jun/Fos heterodimers bind a collagenase-like TRE (CTGACTCAT) with dissociation constants of respectively 1.4 x 10(-7) M and 5 x 10(-8) M. As reported earlier [Patel et al. (1990) Nature 347, 572-575], DNA binding induces a marked change of the protein structure. However, we found that the DNA also undergoes a conformational change. This is most clearly seen with small oligonucleotides of 13 or 14 bp harboring respectively a TRE (TGACTCA) or a CRE (TGACGTCA) sequence. In this case, the positive DNA CD signal at 280 nm increases almost two-fold with a concomitant blue-shift of 3-4 nm. Within experimental error the same spectral changes are observed for TRE and CRE containing DNA fragments. The spectral changes observed with a non-specific DNA fragment are weaker and the signal of free DNA is recovered upon addition of much smaller salt concentrations than required for a specific DNA fragment. Surprisingly the spectral changes induced by Jun/Jun homodimers are not identical to those induced by Jun/Fos heterodimers. However, in both cases the increase of the positive CD band and the concomitant blue shift would be compatible with a B to A-transition of part of the binding site or a DNA conformation intermediate between the canonical A and B structures.  相似文献   
5.
Nineteen linkage groups containing a total of 52 markers have been identified in the sheep genome after typing large paternal half-sib families. The linkage groups range in size from 2 markers showing no recombination to a group containing 6 markers covering approximately 30 cM of the sheep genome. Thirteen of the groups have been assigned to a sheep chromosome. Three groups contain markers from bovine syntenic groups U2, U7 and U29, and one other group contains a marker that has been mapped only in humans. The remaining three groups are unassigned. This information will provide a useful foundation for a genetic linkage map of sheep.  相似文献   
6.
7.
Aerobic catabolism of bile acids.   总被引:2,自引:2,他引:0       下载免费PDF全文
Seventy-eight stable cultures obtained by enrichment on media containing ox bile or a single bile acid were able to utilize one or more bile acids, as well as components of ox bile, as primary carbon sources for growth. All isolates were obligate aerobes, and most (70) were typical (48) or atypical (22) Pseudomonas strains, the remainder (8) being gram-positive actinomycetes. Of six Pseudomonas isolates selected for further study, five produced predominantly acidic catabolites after growth on glycocholic acid, but the sixth, Pseudomonas sp. ATCC 31752, accumulated as the principal product a neutral steroid catabolite. Optimum growth of Pseudomonas sp. ATCC 31752 on ox bile occurred at pH 7 to 8 and from 25 to 30 degrees C. No additional nutrients were required to sustain good growth, but growth was stimulated by the addition of ammonium sulfate and yeast extract. Good growth was obtained with a bile solids content of 40 g/liter in shaken flasks. A near-theoretical yield of neutral steroid catabolites, comprising a major (greater than 50%) and three minor products, was obtained from fermentor growth of ATCC 31752 in 6.7 g of ox bile solids per liter. The possible commercial exploitation of these findings to produce steroid drug intermediates for the pharmaceutical industry is discussed.  相似文献   
8.
The microbial catabolism of deoxycholic acid by a Pseudomonas species was studied, and three acidic products were isolated as their methyl esters. Evidence is presented that the compounds are methyl 3 alpha,12 alpha-dihydroxy-23,24-dinor-5 beta-cholan-22-oate, methyl 12 alpha-hydroxy-3-oxo-5 beta-cholan-24-oate and methyl 12 alpha-hydroxy-3-oxo-23,24-dinor-5 beta-cholan-22-oate.  相似文献   
9.
10.
Leppik M  Peil L  Kipper K  Liiv A  Remme J 《The FEBS journal》2007,274(21):5759-5766
Pseudouridine synthase RluD converts uridines at positions 1911, 1915, and 1917 of 23S rRNA to pseudouridines. These nucleotides are located in the functionally important helix-loop 69 of 23S rRNA. RluD is the only pseudouridine synthase that is required for normal growth in Escherichia coli. We have analyzed substrate specificity of RluD in vivo. Mutational analyses have revealed: (a) RluD isomerizes uridine in vivo only at positions 1911, 1915, and 1917, regardless of the presence of uridine at other positions in the loop of helix 69 of 23S rRNA variants; (b) substitution of one U by C has no effect on the conversion of others (i.e. formation of pseudouridines at positions 1911, 1915, and 1917 are independent of each other); (c) A1916 is the only position in the loop of helix 69, where mutations affect the RluD specific pseudouridine formation. Pseudouridines were determined in the ribosomal particles from a ribosomal large subunit defective strain (RNA helicase DeaD(-)). An absence of pseudouridines in the assembly precursor particles suggests that RluD directed isomerization of uridines occurs as a late step during the assembly of the large ribosomal subunit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号