首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   9篇
  2023年   2篇
  2020年   2篇
  2019年   2篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   8篇
  2012年   9篇
  2011年   9篇
  2010年   2篇
  2008年   6篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1992年   3篇
  1989年   2篇
  1983年   2篇
  1974年   2篇
  1972年   2篇
  1965年   2篇
  1964年   4篇
  1963年   5篇
  1962年   3篇
  1961年   3篇
  1953年   2篇
  1940年   2篇
  1939年   2篇
  1938年   2篇
  1931年   2篇
  1929年   1篇
  1928年   1篇
  1924年   1篇
  1922年   1篇
  1921年   1篇
  1920年   1篇
  1917年   1篇
  1914年   1篇
  1911年   1篇
  1908年   1篇
  1905年   1篇
  1901年   1篇
  1900年   1篇
  1899年   2篇
  1897年   1篇
排序方式: 共有149条查询结果,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
The process of nutrient retranslocation from plant leaves during senescence subsequently affects both plant growth and soil nutrient cycling; changes in either of these could potentially feed back to climate change. Although elemental nutrient resorption has been shown to respond modestly to temperature and precipitation, we know remarkably little about the influence of increasing intensities of drought and warming on the resorption of different classes of plant metabolites. We studied the effect of warming and altered precipitation on the production and resorption of metabolites in Quercus rubra. The combination of warming and drought produced a higher abundance of compounds that can help to mitigate climatic stress by functioning as osmoregulators and antioxidants, including important intermediaries of the tricarboxylic acid (TCA) cycle, amino acids including proline and citrulline, and polyamines such as putrescine. Resorption efficiencies (REs) of extractable metabolites surprisingly had opposite responses to drought and warming; drought treatments generally increased RE of metabolites compared to ambient and wet treatments, while warming decreased RE. However, RE of total N differed markedly from that of extractable metabolites such as amino acids; for instance, droughted plants resorbed a smaller fraction of elemental N from their leaves than plants exposed to the ambient control. In contrast, plants in drought treatment resorbed amino acids more efficiently (>90%) than those in ambient (65–77%) or wet (42–58%) treatments. Across the climate treatments, the RE of elemental N correlated negatively with tissue tannin concentration, indicating that polyphenols produced in leaves under climatic stress could interfere with N resorption. Thus, senesced leaves from drier conditions might have a lower nutritive value to soil heterotrophs during the initial stages of litter decomposition despite a higher elemental N content of these tissues. Our results suggest that N resorption may be controlled not only by plant demand, but also by climatic influences on the production and resorption of plant metabolites. As climate–carbon models incorporate increasingly sophisticated nutrient cycles, these results highlight the need to adequately understand plant physiological responses to climatic variables.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号