首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   7篇
  2021年   2篇
  2018年   1篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1996年   1篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
排序方式: 共有42条查询结果,搜索用时 31 毫秒
1.
A bacterium tentatively identified as a Pseudomonas sp. was isolated from a laboratory aquifer column in which toluene was degraded under denitrifying conditions. The organism mineralized toluene in pure culture in the absence of molecular oxygen. In carbon balance studies using [ring-UL-14C]toluene, more than 50% of the radioactivity was recovered as 14CO2. Nitrate and nitrous oxide served as electron acceptors for toluene mineralization. The organism was also able to degrade m-xylene, benzoate, benzaldehyde, p-cresol, p-hydroxybenzaldehyde, p-hydroxybenzoate and cyclohexanecarboxylic acid in the absence of molecular oxygen.  相似文献   
2.
High-rate anaerobic digestion can be applied in upflow anaerobic sludge blanket reactors for the treatment of various wastewaters. In upflow anaerobic sludge blanket reactors, sludge retention time is increased by a natural immobilization mechanism (viz. the formation of a granular type of sludge). When this sludge is cultivated on acid-containing wastewater, the granules mainly consist of an acetoclastic methanogen resembling Methanothrix soehngenii. This organism grows either in rods or in long filaments. Attempts to cultivate a stable sludge consisting predominantly of Methanosarcina sp. on an acetate-propionate mixture as substrate by lowering the pH from 7.5 during the start-up to approximately 6 failed. After 140 days of continuous operation of the reactor a filamentous organism resembling Methanothrix soehngenii prevailed in the sludge. The specific methanogenic activity of this sludge on acetate-propionate was optimal at pH 6.6 to 6.8 and 7.0 to 7.2, respectively.  相似文献   
3.
Degradation of halogenated aliphatic compounds: The role of adaptation   总被引:1,自引:0,他引:1  
Abstract: A limited number of halogenated aliphatic compounds can serve as a growth substrate for aerobic microorganisms. Such cultures have (specifically) developed a variety of enzyme systems to degrade these compounds. Dehalogenations are of critical importance. Various heavily chlorinated compounds are not easily biodegraded, although there are no obvious biochemical or thermodynamic reasons why microorganisms should not be able to grow with any halogenated compound. The very diversity of catabolic enzymes present in cultures that degrade halogenated aliphatics and the occurrence of molecular mechanisms for genetic adaptation serve as good starting points for the evolution of catabolic pathways for compounds that are currently still resistant to biodegradation.  相似文献   
4.
5.
Cu2+ ion determinations were carried out in complex and in inorganic salts-glycerol media, to which increasing amounts of Cu(II) had been added, with the ion-specific Cu(II)-Selectrode. Likewise, complexing capacity of bacterial suspensions was estimated by titration with CuSO4.Copper-sensitive bacteria, e.g.,Klebsiella aerogenes, were inhibited in their growth and survival in the range of 10–8–10–6 M Cu2+ ion concentrations. In copper-buffered complex media, high copper loads could be tolerated, as growth proceeded with most of the copper bound to medium components. In low-complexing mineral salts media, in which high Cu2+ ion concentrations exist at low copper loads, there was competition of Cu2+ for binding sites of the cells. Total allowed copper was then determined by the ratio of copper to biomass.Copper-resistant bacteria could be isolated from a stock solution of CuSO4, containing 100 ppm Cu(II). They were of thePseudomonas type and showed a much higher tolerance towards Cu2+, up to 10–3 M.  相似文献   
6.
The International Journal of Life Cycle Assessment - Scientific Life Cycle Assessment (LCA) literature provides some examples of LCA teaching in higher education, but not a structured overview of...  相似文献   
7.
Microbial degradation of organic material in methanogenic ecosystems is a multistep process in which subsequent groups use the products of the first groups of organisms in the chain as substrates. The acetogenic bacteria in these systems produce both H2 and acetate. In the present minireview a thermodynamic approach is taken to evaluate the logic behind this duality. The evaluation shows that at the H2 partial pressures that usually occur in methanogenic ecosystems the acetogenic oxidation of known acetogenic substrates such as propionate, butyrate, and benzoate yields more energy than their complete oxidation to H2/CO2. Also, H2 partial pressures needed to achieve complete hydrogenogenic oxidation of these acetogenic substrates would have to be so low that H2 would be virtually unavailable to the hydrogenotrophic bacteria, in casu the methanogens.  相似文献   
8.
Abstract This minireview explores the energetics of the (anaerobic) oxidative and fermentative degradation of halogenated ethenes and ethanes. It is shown that these pathways are viable alternatives to the traditional routes that start with one or more reductive dechlorination steps. In contrast to reductive dehalogenation, oxidative and fermentative degradation pathways do not require an external source of reducing equivalents. This suggests that organisms that use these pathways are most likely to be found at high redox potentials, i.e, under conditions where competition for reducing equivalents is great. Received: 10 February 2000; Accepted: 6 April 2000; Online Publication: 13 June 2000  相似文献   
9.
The cost of materials is one of the biggest barriers for wastewater driven microbial fuel cells (MFCs). Many studies use expensive materials with idealistic wastes. Realistically the choice of an ion selective membrane or nonspecific separators must be made in the context of the cost and performance of materials available. Fourteen membranes and separators were characterized for durability, oxygen diffusion and ionic resistance to enable informed membrane selection for reactor tests. Subsequently MFCs were operated in a cost efficient reactor design using Nafion, ethylene tetrafluoroethylene (ETFE) or polyvinylidene fluoride (PVDF) membranes, a nonspecific separator (Rhinohide), and a no-membrane design with a carbon-paper internal gas diffusion cathode. Peak power densities during polarisation, from MFCs using no-membrane, Nafion and ETFE, reached 67, 61 and 59 mWm-2, and coulombic efficiencies of 68±11%, 71±12% and 92±6%, respectively. Under 1000Ω, Nafion and ETFE achieved an average power density of 29 mWm-2 compared to 24 mWm-2 for the membrane-less reactors. Over a hypothetical lifetime of 10 years the generated energy (1 to 2.5 kWhm-2) would not be sufficient to offset the costs of any membrane and separator tested.  相似文献   
10.
Recent studies have shown that constraints on available resources may play an important role in the evolution of cooperation, especially when individuals do not posses the capacity to recognize other individuals, memory or other developed abilities, as it is the case of most unicellular organisms, algae or even plants. We analyze the evolution of cooperation in the case of a limiting resource, which is necessary for reproduction and survival. We show that, if the strategies determine a prisoner's dilemma, the outcome of the interactions may be modified by the limitation of resources allowing cooperators to invade the entire population. Analytic expressions for the region of cooperation are provided. Furthermore we derive expressions for the connection between fitness, as understood in evolutionary game theory, and resource exchanges, which may be of help to link evolutionary game theoretical results with resource based models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号