首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   670篇
  免费   39篇
  2023年   9篇
  2022年   7篇
  2021年   23篇
  2020年   16篇
  2019年   17篇
  2018年   28篇
  2017年   14篇
  2016年   23篇
  2015年   21篇
  2014年   45篇
  2013年   42篇
  2012年   38篇
  2011年   48篇
  2010年   21篇
  2009年   19篇
  2008年   26篇
  2007年   31篇
  2006年   31篇
  2005年   24篇
  2004年   25篇
  2003年   16篇
  2002年   18篇
  2001年   11篇
  2000年   26篇
  1999年   19篇
  1998年   9篇
  1997年   9篇
  1996年   8篇
  1995年   6篇
  1994年   6篇
  1993年   3篇
  1992年   14篇
  1991年   3篇
  1990年   3篇
  1989年   6篇
  1988年   5篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1980年   2篇
  1979年   4篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
  1966年   3篇
  1962年   3篇
  1961年   1篇
  1954年   1篇
排序方式: 共有709条查询结果,搜索用时 15 毫秒
1.
Role of Thidiazuron (TDZ) in inducing adventitious organogenesis in Pongamia was studied. TDZ at different concentrations (0, 0.45, 2.27, 4.54, 6.71, 9.08, 11.35, 13.12 and 22.71 μM) were used for induction of caulogenic bud formation in deembryonated cotyledon explants. Each cotyledon was cut into three segments and identified as proximal, middle and distal. Duration of TDZ exposure, influence of the segment and orientation of the explant were studied. TDZ at 11.35 μM concentration was optimum for the induction of shoots and rapid elongation. Shoots induced at higher concentration elongated after several passages in growth regulator free medium, thereby extending the period of differentiation. Exposure of the explant for 20 days yielded more number of buds than 10 days. Proximal segment of the cotyledon was more responsive. Contact of abaxial surface in the medium was more effective and generated more buds than the adaxial side. Buds differentiated and elongated on transfer to MS basal medium for 8–12 passages of 15 days each. Rooting and elongation of shoots was achieved in charcoal supplemented half-strength MS medium. Rooted plantlets survived on transfer to sand soil mixture. The plants were hardened and transferred to green house. This is the first report on in vitro regeneration of Pongamia pinnata via adventitious organogenesis using TDZ. This protocol may find application in studies in genetic transformation, isolation of somaclonal variants and in induction of mutants. It also provides a system to study the inhibitory role of TDZ on shoot differentiation.  相似文献   
2.
Understanding the morphology of fungi   总被引:3,自引:0,他引:3  
Filamentous fungi comprise an industrially very important collection of microorganisms, since they are used for the production of a wide variety of products ranging from primary metabolites to secondary metabolites and further on to industrial enzymes (such as proteases, lipases and antibiotics). It is known that fungal morphology is often considered as one of the key parameters in industrial production. For the production of fungal metabolite products, the desired morphology varies from one product to another. Many parameters affect the morphology of fungi during the process of fermentation, among them speed of agitation, specific growth rate, dissolved oxygen, number of spores or conidia per liter of fermentation broth are important and should be considered when higher yield is desired in the process. It is, therefore, of considerable importance to understand the mechanism underlying the morphology of the cell, its growth and product formation by filamentous fungi. Such knowledge may be used in the optimization of the microbial process. Several literatures with various fungi to study their morphology, relating enzyme or product production to the character of the fungi in the study is reviewed. It is also considered that how the process parameters affects the morphology. The aim of this communication is to review the relevant literature to understand the morphology of filamentous fungi.  相似文献   
3.
4.
Intestinal iron absorption during suckling in mammals   总被引:1,自引:0,他引:1  
The maintenance of appropriate iron levels is important for mammalian health, particularly during the rapid growth period following birth. Too little iron can lead to irreversible damage to the developing central nervous system and too much iron at this point can have adverse long term consequences, possibly due to excessive free radical production. In order to maintain iron levels, intestinal iron absorption is very efficient in young mammals, such that almost all of the iron in breast milk is utilized. However this high level of absorption is unable to be down regulated in response to excess iron as it can be in adults, implying that different regulatory processes are involved during suckling. Various mechanisms have been proposed to explain this high absorption, including enhanced expression of the proteins involved in iron absorption in adults (particularly DMT1 and ferroportin), non-specific uptake via pinocytosis, and the uptake of lactoferrin bound iron by the lactoferrin receptor. However, at present the precise mechanism is unclear. It is possible that all of these components contribute to the high intestinal iron absorption seen during suckling, or a novel, as yet undescribed, mechanism could be involved. This review summarises the evidence for and against each of the mechanisms described above and highlights how little is known about iron homeostasis in this vital stage of development.  相似文献   
5.
6.
Plant Molecular Biology Reporter - B-box proteins have emerged as prominent mechanisms for controlling growth and developmental processes and in some instances responses to biotic and abiotic...  相似文献   
7.
8.
Recently approved chemotherapeutic agents to treat colorectal cancer (CRC) have made some impact; however, there is an urgent need for newer targeted agents and strategies to circumvent CRC growth and metastasis. CRC frequently exhibits natural resistance to chemotherapy and those who do respond initially later acquire drug resistance. A mechanism to potentially sensitize CRC cells is by blocking the DNA polymerase β (Pol-β) activity. Temozolomide (TMZ), an alkylating agent, and other DNA-interacting agents exert DNA damage primarily repaired by a Pol-β-directed base excision repair (BER) pathway. In previous studies, we used structure-based molecular docking of Pol-β and identified a potent small molecule inhibitor (NSC666715). In the present study, we have determined the mechanism by which NSC666715 and its analogs block Fen1-induced strand-displacement activity of Pol-β-directed LP-BER, cause apurinic/apyrimidinic (AP) site accumulation and induce S-phase cell cycle arrest. Induction of S-phase cell cycle arrest leads to senescence and apoptosis of CRC cells through the p53/p21 pathway. Our initial findings also show a 10-fold reduction of the IC50 of TMZ when combined with NSC666715. These results provide a guide for the development of a target-defined strategy for CRC chemotherapy that will be based on the mechanisms of action of NSC666715 and TMZ. This combination strategy can be used as a framework to further reduce the TMZ dosages and resistance in CRC patients.  相似文献   
9.
10.
Alzheimer’s disease (AD) is a genetically complex, progressive and irreversible neurodegenerative disorder of the brain which involves multiple associated etiological targets. The complex pathogenesis of AD gave rise to multi-target-directed ligands (MTDLs) principle to combat this dreaded disease. Within this approach, the design and synthesis of hybrids prevailed greatly because of their capability to simultaneously target the intertwined pathogenesis components of the disease. The hybrids include pharmacophoric hybridization of two or more established chemical scaffolds endowed with the desired pharmacological properties into a single moiety. In AD, the primary foundation of medication therapy and drug design strategies includes the inhibition of cholinesterase (ChE) enzymes. Hence the development of ChE inhibition based hybrids is the central choice of AD medicinal chemistry research. To illustrate the progress of ChE inhibition based hybrids and novel targets, we reviewed the medicinal chemistry and pharmacological properties of the multi-target molecules published since 1998-December 2018. We hope that this article will allow the readers to easily follow the evolution of this prominent medicinal chemistry approach to develop a more efficient inhibitor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号