首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   3篇
  2021年   1篇
  2020年   1篇
  2017年   1篇
  2015年   3篇
  2014年   1篇
  2013年   3篇
  2012年   7篇
  2011年   8篇
  2010年   2篇
  2009年   5篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   4篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
排序方式: 共有54条查询结果,搜索用时 93 毫秒
1.
We have investigated the phenotypic and functional characteristics of murine pre-B cells obtained in semisolid and liquid culture with stem cell factor (SCF) and interleukin 7 (IL-7). Both serum-supplemented and serum-deprived culture conditions were used. The source of bone marrow cells was either normal mice (CD1 and C3H) or the lupus strain of mice MRL/Ipr and its congenic strain MRL/+. SCF (100 ng/ml) and IL-7 (250 ng/ml) supported murine B cell proliferation in vitro from all the murine strains analyzed both in serum-supplemented and serum-deprived conditions. Maximal colony growth was observed in both cases when the factors were used in combination. The growth factors alone induced some colony growth in serum-supplemented cultures but were either ineffective or had modest activity in serum-deprived cultures. Cells harvested from the colonies or generated in liquid cultures and stimulated with SCF + IL-7 in the absence of serum had almost exclusively a pre-B cell phenotype (BP-1+, B220+, slg-, CD4-, CD8-, Mac-1, RB-6-). Both the maximal colony growth in semisolid culture and the maximal number of cells in liquid culture were observed at day 12–14. At this time, the pre-B cells failed to differentiate further and started to die. Pre-B cells generated in vitro were, however, capable of differentiating in vivo. SCID mice injected with 2 × 106 pre-B cells had readily detectable serum levels of IgM (54 ± 26 m?g/ml) and IgG (60 ± 95 m?g/ml) at 4 weeks and 6 weeks posttransplantation, respectively. Mature B and T cells of the donor major histocompatibility complex type were detected in the SCID mice at sacrifice 14 weeks posttransplantation. These data indicate that purified (>80% BP-1+) populations of functional pre-B cells can be grown from murine bone marrow of normal mice as well as of lupus mice in serum-deprived cultures stimulated with SCF and IL-7. These cultures, therefore, provide a highly enriched source of pre-B cells but also contain T cell precursors that differentiate upon adoptive transfer into SCID mice. © 1995 Wiley-Liss, Inc.  相似文献   
2.
Highlights? Cnn2 is expressed in NCCs and required for their migration in frogs and chicks ? Cnn2 is inactivated by noncanonical Wnt signaling ? Loss of Cnn2 causes a switch from cortical actin to central stress fibers ? Cnn2 polarizes the actin cytoskeleton downstream of PCP  相似文献   
3.
We present a computational model of the interaction between hydrophobic cations, such as the antimicrobial peptide, Magainin2, and membranes that include anionic lipids. The peptide's amino acids were represented as two interaction sites: one corresponds to the backbone alpha-carbon and the other to the side chain. The membrane was represented as a hydrophobic profile, and its anionic nature was represented by a surface of smeared charges. Thus, the Coulombic interactions between the peptide and the membrane were calculated using the Gouy-Chapman theory that describes the electrostatic potential in the aqueous phase near the membrane. Peptide conformations and locations near the membrane, and changes in the membrane width, were sampled at random, using the Metropolis criterion, taking into account the underlying energetics. Simulations of the interactions of heptalysine and the hydrophobic-cationic peptide, Magainin2, with acidic membranes were used to calibrate the model. The calibrated model reproduced structural data and the membrane-association free energies that were measured also for other basic and hydrophobic-cationic peptides. Interestingly, amphipathic peptides, such as Magainin2, were found to adopt two main membrane-associated states. In the first, the peptide resided mostly outside the polar headgroups region. In the second, which was energetically more favorable, the peptide assumed an amphipathic-helix conformation, where its hydrophobic face was immersed in the hydrocarbon region of the membrane and the charged residues were in contact with the surface of smeared charges. This dual behavior provides a molecular interpretation of the available experimental data.  相似文献   
4.
5.
We introduce here a novel Monte Carlo simulation method for studying the interactions of hydrophobic peptides with lipid membranes. Each of the peptide's amino acids is represented as two interaction sites: one corresponding to the backbone alpha-carbon and the other to the side chain, with the membrane represented as a hydrophobic profile. Peptide conformations and locations in the membrane and changes in the membrane width are sampled using the Metropolis criterion, taking into account the underlying energetics. Using this method we investigate the interactions between the hydrophobic peptide M2delta and a model membrane. The simulations show that starting from an extended conformation in the aqueous phase, the peptide first adsorbs onto the membrane surface, while acquiring an ordered helical structure. This is followed by formation of a helical-hairpin and insertion into the membrane. The observed path is in agreement with contemporary understanding of peptide insertion into biological membranes. Two stable orientations of membrane-associated M2delta were obtained: transmembrane (TM) and surface, and the value of the water-to-membrane transfer free energy of each of them is in agreement with calculations and measurements on similar cases. M2delta is most stable in the TM orientation, where it assumes a helical conformation with a tilt of 14 degrees between the helix principal axis and the membrane normal. The peptide conformation agrees well with the experimental data; average root-mean-square deviations of 2.1 A compared to nuclear magnetic resonance structures obtained in detergent micelles and supported lipid bilayers. The average orientation of the peptide in the membrane in the most stable configurations reported here, and in particular the value of the tilt angle, are in excellent agreement with the ones calculated using the continuum-solvent model and the ones observed in the nuclear magnetic resonance studies. This suggests that the method may be used to predict the three-dimensional structure of TM peptides.  相似文献   
6.

Background

VICKZ (IGF2BP1,2,3/ZBP1/Vg1RBP/IMP1,2,3) proteins bind RNA and help regulate many RNA-mediated processes. In the midbrain region of early chick embryos, VICKZ is expressed in the neural folds and along the basal surface of the neural epithelium, but, upon neural tube closure, is down-regulated in prospective cranial neural crest (CNC) cells, concomitant with their emigration and epithelial-to-mesenchymal transition (EMT). Electroporation of constructs that modulate cVICKZ expression demonstrates that this down-regulation is both necessary and sufficient for CNC EMT. These results suggest that VICKZ down-regulation in CNC cell-autonomously promotes EMT and migration. Reduction of VICKZ throughout the embryo, however, inhibits CNC migration non-cell-autonomously, as judged by transplantation experiments in Xenopus embryos.

Results and Conclusions

Given the positive role reported for VICKZ proteins in promoting cell migration of chick embryo fibroblasts and many types of cancer cells, we have begun to look for specific mRNAs that could mediate context-specific differences. We report here that the laminin receptor, integrin alpha 6, is down-regulated in the dorsal neural tube when CNC cells emigrate, this process is mediated by cVICKZ, and integrin alpha 6 mRNA is found in VICKZ ribonucleoprotein complexes. Significantly, prolonged inhibition of cVICKZ in either the neural tube or the nascent dermomyotome sheet, which also dynamically expresses cVICKZ, induces disruption of these epithelia. These data point to a previously unreported role for VICKZ in maintaining epithelial integrity.  相似文献   
7.
Paraoxonase 1 (PON1) is an HDL-associated lactonase with antiatherogenic properties. These include dampening the oxidation properties of human carotid lesion lipid extract (LLE), which in turn inactivates the enzyme. The aims of this study were to identify the PON1 inhibitor in LLE and explore the mechanism of inhibition. LLE inhibited both recombinant PON1 and HDL-PON1 lactonase activity in a dose- and time-dependent manner. Addition of antioxidants or electrophiles to LLE did not prevent PON1 inhibition. LLE was unable to inhibit a PON1 mutant lacking Cys284, whereas it did inhibit all other PON1 mutants tested. The inhibitor in the LLE was identified as linoleic acid hydroperoxide (LA-OOH) and inhibition was specific to this hydroperoxide. During its inhibition, PON1 acted like a peroxidase enzyme, reducing LA-OOH to LA-hydroxide via its Cys284. A similar reaction occurred with external thiols, such as DDT or cysteine, which also prevented PON1 inhibition and restored enzyme activity after inhibition. Thus, the antiatherogenic properties of HDL could be, at least in part, related to the sulfhydryl-reducing characteristics of its associated PON1, which are further protected and recycled by the sulfhydryl amino acid cysteine.  相似文献   
8.
Recurrence of breast cancer often follows a long latent period in which there are no signs of cancer, and metastases may not become clinically apparent until many years after removal of the primary tumor and adjuvant therapy. A likely explanation of this phenomenon is that tumor cells have seeded metastatic sites, are resistant to conventional therapies, and remain dormant for long periods of time 1-4.The existence of dormant cancer cells at secondary sites has been described previously as quiescent solitary cells that neither proliferate nor undergo apoptosis 5-7. Moreover, these solitary cells has been shown to disseminate from the primary tumor at an early stage of disease progression 8-10 and reside growth-arrested in the patients'' bone marrow, blood and lymph nodes 1,4,11. Therefore, understanding mechanisms that regulate dormancy or the switch to a proliferative state is critical for discovering novel targets and interventions to prevent disease recurrence. However, unraveling the mechanisms regulating the switch from tumor dormancy to metastatic growth has been hampered by the lack of available model systems. in vivo and ex vivo model systems to study metastatic progression of tumor cells have been described previously 1,12-14. However these model systems have not provided in real time and in a high throughput manner mechanistic insights into what triggers the emergence of solitary dormant tumor cells to proliferate as metastatic disease. We have recently developed a 3D in vitro system to model the in vivo growth characteristics of cells that exhibit either dormant (D2.OR, MCF7, K7M2-AS.46) or proliferative (D2A1, MDA-MB-231, K7M2) metastatic behavior in vivo . We demonstrated that tumor cells that exhibit dormancy in vivo at a metastatic site remain quiescent when cultured in a 3-dimension (3D) basement membrane extract (BME), whereas cells highly metastatic in vivo readily proliferate in 3D culture after variable, but relatively short periods of quiescence. Importantly by utilizing the 3D in vitro model system we demonstrated for the first time that the ECM composition plays an important role in regulating whether dormant tumor cells will switch to a proliferative state and have confirmed this in in vivo studies15-17. Hence, the model system described in this report provides an in vitro method to model tumor dormancy and study the transition to proliferative growth induced by the microenvironment.Download video file.(58M, mov)  相似文献   
9.
Rising concentrations of atmospheric carbon dioxide are acidifying the world''s oceans. Surface seawater pH is 0.1 units lower than pre-industrial values and is predicted to decrease by up to 0.4 units by the end of the century. This change in pH may result in changes in the physiology of ocean organisms, in particular, organisms that build their skeletons/shells from calcium carbonate, such as corals. This physiological change may also affect other members of the coral holobiont, for example, the microbial communities associated with the coral, which in turn may affect the coral physiology and health. In the present study, we examined changes in bacterial communities in the coral mucus, tissue and skeleton following exposure of the coral Acropora eurystoma to two different pH conditions: 7.3 and 8.2 (ambient seawater). The microbial community was different at the two pH values, as determined by denaturing gradient gel electrophoresis and 16S rRNA gene sequence analysis. Further analysis of the community in the corals maintained at the lower pH revealed an increase in bacteria associated with diseased and stressed corals, such as Vibrionaceae and Alteromonadaceae. In addition, an increase in the number of potential antibacterial activity was recorded among the bacteria isolated from the coral maintained at pH 7.3. Taken together, our findings highlight the impact that changes in the pH may have on the coral-associated bacterial community and their potential contribution to the coral host.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号