首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3431篇
  免费   184篇
  2023年   15篇
  2022年   12篇
  2021年   57篇
  2020年   48篇
  2019年   52篇
  2018年   73篇
  2017年   69篇
  2016年   103篇
  2015年   150篇
  2014年   164篇
  2013年   255篇
  2012年   283篇
  2011年   275篇
  2010年   178篇
  2009年   150篇
  2008年   274篇
  2007年   223篇
  2006年   257篇
  2005年   213篇
  2004年   181篇
  2003年   170篇
  2002年   127篇
  2001年   29篇
  2000年   21篇
  1999年   28篇
  1998年   12篇
  1997年   20篇
  1996年   17篇
  1995年   13篇
  1994年   4篇
  1993年   8篇
  1992年   19篇
  1991年   16篇
  1990年   9篇
  1989年   7篇
  1988年   9篇
  1987年   11篇
  1986年   9篇
  1985年   4篇
  1984年   10篇
  1983年   4篇
  1982年   5篇
  1981年   4篇
  1980年   2篇
  1979年   3篇
  1978年   4篇
  1977年   4篇
  1976年   4篇
  1974年   3篇
  1961年   3篇
排序方式: 共有3615条查询结果,搜索用时 20 毫秒
1.
After significant injury, the liver must maintain homeostasis during the regenerative process. We hypothesized the existence of mechanisms to limit hepatocyte proliferation after injury to maintain metabolic and synthetic function. A screen for candidates revealed suppressor of cytokine signaling 2 (SOCS2), an inhibitor of growth hormone (GH) signaling, was strongly induced after partial hepatectomy. Using genetic deletion and administration of various factors we investigated the role of SOCS2 during liver regeneration. SOCS2 preserves liver function by restraining the first round of hepatocyte proliferation after partial hepatectomy by preventing increases in growth hormone receptor (GHR) via ubiquitination, suppressing GH pathway activity. At later times, SOCS2 enhances hepatocyte proliferation by modulating a decrease in serum insulin-like growth factor 1 (IGF-1) that allows GH release from the pituitary. SOCS2, therefore, plays a dual role in modulating the rate of hepatocyte proliferation. In particular, this is the first demonstration of an endogenous mechanism to limit hepatocyte proliferation after injury.  相似文献   
2.
Multidrug-resistant enterococci are considered crucial drivers for the dissemination of antimicrobial resistance determinants within and beyond a genus. These organisms may pass numerous resistance determinants to other harmful pathogens, whose multiple resistances would cause adverse consequences. Therefore, an understanding of the coexistence epidemiology of resistance genes is critical, but such information remains limited. In this study, our first objective was to determine the prevalence of principal resistance phenotypes and genes among Enterococcus faecalis isolated from retail chicken domestic products collected throughout Japan. Subsequent analysis of these data by using an additive Bayesian network (ABN) model revealed the co-appearance patterns of resistance genes and identified the associations between resistance genes and phenotypes. The common phenotypes observed among E. faecalis isolated from the domestic products were the resistances to oxytetracycline (58.4%), dihydrostreptomycin (50.4%), and erythromycin (37.2%), and the gene tet(L) was detected in 46.0% of the isolates. The ABN model identified statistically significant associations between tet(L) and erm(B), tet(L) and ant(6)-Ia, ant(6)-Ia and aph(3’)-IIIa, and aph(3’)-IIIa and erm(B), which indicated that a multiple-resistance profile of tetracycline, erythromycin, streptomycin, and kanamycin is systematic rather than random. Conversely, the presence of tet(O) was only negatively associated with that of erm(B) and tet(M), which suggested that in the presence of tet(O), the aforementioned multiple resistance is unlikely to be observed. Such heterogeneity in linkages among genes that confer the same phenotypic resistance highlights the importance of incorporating genetic information when investigating the risk factors for the spread of resistance. The epidemiological factors that underlie the persistence of systematic multiple-resistance patterns warrant further investigations with appropriate adjustments for ecological and bacteriological factors.  相似文献   
3.
Athletic training is known to induce neuroplastic alterations in specific somatosensory circuits, which are reflected by changes in somatosensory evoked potentials and event-related potentials. The aim of this study was to clarify whether specific athletic training also affects somatosensory Nogo potentials related to the inhibition of movements. The Nogo potentials were recorded at nine cortical electrode positions (Fz, Cz, Pz, F3, F4, C3, C4, P3 and P4) in 12 baseball players (baseball group) and in 12 athletes in sports, such as track and field events and swimming, that do not require response inhibition, such as batting for training or performance (sports group). The Nogo potentials and Go/Nogo reaction times (Go/Nogo RTs) were measured under a somatosensory Go/Nogo paradigm in which subjects were instructed to rapidly push a button in response to stimulus presentation. The Nogo potentials were obtained by subtracting the Go trial from the Nogo trial. The peak Nogo-N2 was significantly shorter in the baseball group than that in the sports group. In addition, the amplitude of Nogo-N2 in the frontal area was significantly larger in the baseball group than that in the sports group. There was a significant positive correlation between the latency of Nogo-N2 and Go/Nogo RT. Moreover, there were significant correlations between the Go/Nogo RT and both the amplitude of Nogo-N2 and Nogo-P3 (i.e., amplitude of the Nogo-potentials increases with shorter RT). Specific athletic training regimens may induce neuroplastic alterations in sensorimotor inhibitory processes.  相似文献   
4.
5.
6.
Ataxia-telangiectasia mutated (ATM) plays crucial roles in DNA damage responses, especially with regard to DNA double-strand breaks (DSBs). However, it appears that ATM can be activated not only by DSB, but also by some changes in chromatin architecture, suggesting potential ATM function in cell cycle control. Here, we found that ATM is involved in timely degradation of Cdt1, a critical replication licensing factor, during the unperturbed S phase. At least in certain cell types, degradation of p27Kip1 was also impaired by ATM inhibition. The novel ATM function for Cdt1 regulation was dependent on its kinase activity and NBS1. Indeed, we found that ATM is moderately phosphorylated at Ser1981 during the S phase. ATM silencing induced partial reduction in levels of Skp2, a component of SCFSkp2 ubiquitin ligase that controls Cdt1 degradation. Furthermore, Skp2 silencing resulted in Cdt1 stabilization like ATM inhibition. In addition, as reported previously, ATM silencing partially prevented Akt phosphorylation at Ser473, indicative of its activation, and Akt inhibition led to modest stabilization of Cdt1. Therefore, the ATM-Akt-SCFSkp2 pathway may partly contribute to the novel ATM function. Finally, ATM inhibition rendered cells hypersensitive to induction of re-replication, indicating importance for maintenance of genome stability.  相似文献   
7.
Aggregatibacter actinomycetemcomitans is considered to be associated with periodontitis. Leukotoxin (LtxA), which destroys leukocytes in humans, is one of this bacterium's major virulence factors. Amounts of neutrophil elastase (NE), which is normally localized in the cytoplasm of neutrophils, are reportedly increased in the saliva of patients with periodontitis. However, the mechanism by which NE is released from human neutrophils and the role of NE in periodontitis is unclear. In the present study, it was hypothesized that LtxA induces NE release from human neutrophils, which subsequently causes the breakdown of periodontal tissues. LtxA‐treatment did not induce significant cytotoxicity against human gingival epithelial cells (HGECs) or human gingival fibroblasts (HGFs). However, it did induce significant cytotoxicity against human neutrophils, leading to NE release. Furthermore, NE and the supernatant from LtxA‐treated human neutrophils induced detachment and death of HGECs and HGFs, these effects being inhibited by administration of an NE inhibitor, sivelestat. The present results suggest that LtxA mediates human neutrophil lysis and induces the subsequent release of NE, which eventually results in detachment and death of HGECs and HGFs. Thus, LtxA‐induced release of NE could cause breakdown of periodontal tissue and thereby exacerbate periodontitis.  相似文献   
8.
9.
Sequence analyses of the complete brown bear, Ursus arctos, mitochondrial DNA (mtDNA) genome have detected scattered single nucleotide polymorphisms (SNPs) that define distinct mtDNA haplogroups in phylogeographical studies. The degraded DNA in historical samples, such as stuffed or excavated specimens, however, is often not suitable for sequence analyses. To address this problem, we developed an amplified product length polymorphism (APLP) analysis for mtDNA‐haplogrouping U. arctos specimens by detecting haplogroup‐specific SNPs. We verified the validity and utility of this method by analysing up to 170‐year‐old skin samples from U. arctos specimens collected widely across continental Eurasia. We detected some of the same haplogroups as those occurring in eastern Hokkaido (Japan) and eastern Alaska in continental Eurasia (the Altai and the Caucasus). Our results show that U. arctos in eastern Hokkaido and eastern Alaska descended from a common ancestor in continental Eurasia, and suggest that U. arctos occupied several refugia in southern Asia during the Last Glacial Maximum. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 627–635.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号