首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   832篇
  免费   130篇
  国内免费   29篇
  2020年   11篇
  2019年   8篇
  2018年   14篇
  2017年   8篇
  2016年   17篇
  2015年   20篇
  2014年   19篇
  2013年   29篇
  2012年   34篇
  2011年   39篇
  2010年   34篇
  2009年   32篇
  2008年   37篇
  2007年   29篇
  2006年   47篇
  2005年   31篇
  2004年   30篇
  2003年   29篇
  2002年   44篇
  2001年   30篇
  2000年   24篇
  1999年   29篇
  1998年   22篇
  1997年   16篇
  1996年   16篇
  1995年   13篇
  1994年   16篇
  1993年   9篇
  1992年   22篇
  1991年   17篇
  1990年   13篇
  1989年   18篇
  1988年   16篇
  1987年   18篇
  1986年   11篇
  1985年   13篇
  1984年   13篇
  1983年   13篇
  1982年   6篇
  1981年   10篇
  1980年   11篇
  1979年   13篇
  1978年   9篇
  1977年   13篇
  1974年   6篇
  1973年   5篇
  1972年   8篇
  1971年   11篇
  1970年   7篇
  1949年   7篇
排序方式: 共有991条查询结果,搜索用时 250 毫秒
1.
Summary The relationship between alkaline phosphatase and environmental salinity was examined in the rainbow trout and the migratory rainbow (steelhead),Salmo gairdneri. The enzyme activity in tissues involved in osmoregulation was strongly correlated with the adaptation salinity and thus to the degree of salt and fluid transport in those tissues. After transfer from freshwater to seawater, the specific activity of the enzyme increased over 260% in the intestine, decreased by 50% in kidney, and was unchanged in the liver, an organ not directly involved in osmoregulation. The sea-run steelhead trout response was similar to the nonmigratory rainbow; although, the pre-migratory transformation (smoltification) had no effect on enzyme activity. Amino acid inhibitors of alkaline phosphatase significantly reduced fluid absorption in the isolated intestine of rainbow trout, reaffirming the relationship between the enzyme and fluid movement. Electrophoretic identification of trout alkaline phosphatase isozymes, clearly distinguishes the enzyme from different tissue origins. However, from the analysis of intestinal electrophoretic patterns, osmoregulatory adjustments are not associated with the induction of new alkaline phosphatase isozymes, or in the large scale preferential stimulation of one of the two existing intestinal isozymes over the other.  相似文献   
2.
The nuclear lamina of vertebrates is composed of several major polypeptides that range in mol. wt from 60 to 80 kd. In mammals, the three major lamin proteins are designated A, B and C. Two major lamins have been described in Xenopus somatic tissues; two other lamins are expressed primarily in germ cells. We have analysed a cDNA clone encoding a Xenopus lamin that is highly homologous to human lamins A and C. The predicted protein has the carboxy-terminal domain characteristic of human lamin A and is thus a lamin A homologue. Surprisingly, the lamin encoded by the cDNA clone is not one of the known Xenopus lamins. The encoded protein is distinct in size from the oocyte lamin LIII and the two somatic lamins LI and LII. Monoclonal antibodies specific for LII, LIII and LIV (the lamin of male germ cells) do not recognize the protein encoded by the cDNA clone; conversely, a polyclonal antibody against the encoded protein does not recognize any of the known Xenopus lamins. This lamin is expressed late in embryonic development, and is present in all adult somatic cells examined, except erythrocytes. Thus frogs and mammals are similar in having three major somatic lamins that fall into distinct structural classes.  相似文献   
3.
Posttranslational modification and microtubule stability   总被引:16,自引:12,他引:4       下载免费PDF全文
We have probed the relationship between tubulin posttranslational modification and microtubule stability, using a variation of the antibody-blocking technique. In human retinoblastoma cells we find that acetylated and detyrosinated microtubules represent congruent subsets of the cells' total microtubules. We also find that stable microtubules defined as those that had not undergone polymerization within 1 h after injection of biotin-tubulin were all posttranslationally modified; furthermore dynamic microtubules were all unmodified. We therefore conclude that in these cells the stable, acetylated, and detyrosinated microtubules represent the same subset of the cells' total network. Posttranslational modification, however, is not a prerequisite for microtubule stability and vice versa. Potorous tridactylis kidney cells have no detectable acetylated microtubules but do have a sizable subset of stable ones, and chick embryo fibroblast cells are extensively modified but have few stable microtubules. We conclude that different cell types can create specific microtubule subsets by modulating the relative rates of posttranslational modification and microtubule turnover.  相似文献   
4.
M Eberhard  K Kirschner 《FEBS letters》1989,245(1-2):219-222
The active-site residues of indoleglycerol-phosphate synthase from Escherichia coli were tentatively localized by comparing crystallographic data with the amino acid identities among the known indoleglycerol-phosphate synthase sequences. To test the validity of the resulting model of catalysis one of the residues in the presumptive active site, Lys 55, was changed to serine using oligonucleotide-directed mutagenesis. The specificity constant kcat/Km of the mutant is 3 x 10(4)-times lower than that of the wild-type enzyme, due to a 60-fold decrease in kcat and a 450-fold increase in Km. This finding shows that Lys 55 is important for both catalysis and substrate binding.  相似文献   
5.
A new procedure was used to synthesize a derivative of ganglioside GM1 containing a photoreactive nitrophenyl azide group at the end of the fatty acyl moiety, using deAc-deAcyl-GM1 obtained by deacetylation of the sialic acid and deacylation of the ceramide portion of GM1. This deAc-deAcyl-GM1 was first acylated at the long chain base amino group with 12-aminododecanoic acid, which has the amino group protected by a fluorenyl residue, and tritium labeled at the sialic acid amino group with [3H]acetic anhydride of very high specific radioactivity. The fluorenyl group removed by ammonia treatment was substituted by a nitrophenyl azide group. Cultured human fibroblasts were exposed to mixtures of radioactive photolabeled GM1 and cold natural GM1 (1:10 by mol) for different times and then illuminated and the radioactive protein patterns studied by SDS-PAGE. After 2h of exposure, the photolabeled GM1 was stably associated to the cells and underwent almost no metabolic processing, behaving exactly as the underivatized natural GM1. Under these conditions very few proteins became radioactive: one, of about 30 kDa, interacted with the ganglioside molecules inserted into the outer membrane layer; three, in the region of 46 kDa, interacted with the portion of associated ganglioside able to be released by trypsin treatment. Thus, it is evident that the ganglioside binding to fibroblasts and insertion into the outer layer of the plasma membrane involve few individual proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
6.
7.
Nerve growth factor induces neurite process formation in pheochromacytoma (PC12) cells and causes the parallel increase in levels of the microtubule-associated proteins, tau and MAP1, as well as increases in tubulin levels. Mechanisms to insure balanced accumulation of microtubule proteins and make their levels highly responsive to nerve growth factor were investigated. The effects on tau, MAP1, and tubulin are due to changes in protein synthesis rates, which for tau and tubulin we could show are due in part to changes in the mRNA levels. Whereas tubulin shows feedback regulation to modulate synthesis up or down, tau protein synthesis is not affected in a straightforward way by microtubule polymerization and depolymerization. The degradation of tau, MAP1, and both tubulin polypeptides, however, are stimulated by microtubule depolymerization caused by colchicine, or nerve growth factor removal. Combined feedback on synthesis and stability make tubulin levels highly responsive to assembly states. In addition, the linkage of tau and MAP1 turnover with the state of microtubule polymerization amplifies any change in their rate of synthesis, since tau and MAP1 promote microtubule polymerization. This linkage lends itself to rapid changes in the state of the system in response to nerve growth factor.  相似文献   
8.
Nuclear DNA was extracted from each of the eight species comprising the Drosophila melanogaster species subgroup. Southern hybridization of this DNA by using a molecular probe specific for the alpha-amylase coding region showed that the duplicated structure of the amylase locus, first found in D. melanogaster, is conserved among all species of the melanogaster subgroup. Evidence is also presented for the concerted evolution of the duplicated genes within each species. In addition, it is shown that the glucose repression of amylase gene expression, which has been extensively studied in D. melanogaster, is not confined to this species but occurs in all eight members of the species subgroup. Thus, both the duplicated gene structure and the glucose repression of Drosophila amylase gene activity are stable over extended periods of evolutionary time.   相似文献   
9.
E Amaya  T J Musci  M W Kirschner 《Cell》1991,66(2):257-270
Peptide growth factors may play a role in patterning of the early embryo, particularly in the induction of mesoderm. We have explored the role of fibroblast growth factor (FGF) in early Xenopus development by expressing a dominant negative mutant form of the FGF receptor. Using a functional assay in frog oocytes, we found that a truncated form of the receptor effectively abolished wild-type receptor function. Explants from embryos expressing this dominant negative mutant failed to induce mesoderm in response to FGF. In whole embryos the mutant receptor caused specific defects in gastrulation and in posterior development, and overexpression of a wild-type receptor could rescue these developmental defects. These results demonstrate that the FGF signaling pathway plays an important role in early embryogenesis, particularly in the formation of the posterior and lateral mesoderm.  相似文献   
10.
Semisynthetic single-chain GM1 derivatives containing N-acetyl-sphingosine (LIGA4) or N-dichloroacetyl-sphingosine (LIGA20) were recently reported to exert strong protection against glutamate-induced neuronal death in primary cultures of cerebellar granule cells. Elucidation of the molecular mechanism underlying the evoked effect requires knowledge of the metabolic fate of such molecules in the same cultured cells. For this, LIGA4 and LIGA20 were made radioactive on the long chain base moiety and added to cerebellar granule cells in culture in parallel with GM1 ganglioside. The metabolic fate was then investigated. It was found that both these molecules were easily taken up by the cells and promptly metabolized in a fashion qualitatively similar to that of control GM1. The highest amount processed was attributed to the different aggregation properties of LIGAs in solution. Among metabolites, higher accumulation of the single-chain ceramide residues was found after LIGA administration. Interestingly, sphingomyelin was generated, regardless the added compound, suggesting a recycling of the free long chain base.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号