首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   33篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2018年   5篇
  2017年   5篇
  2016年   7篇
  2015年   16篇
  2014年   18篇
  2013年   9篇
  2012年   13篇
  2011年   12篇
  2010年   10篇
  2009年   10篇
  2008年   10篇
  2007年   13篇
  2006年   10篇
  2005年   14篇
  2004年   12篇
  2003年   7篇
  2002年   10篇
  2001年   13篇
  2000年   6篇
  1999年   10篇
  1998年   13篇
  1997年   11篇
  1996年   9篇
  1995年   9篇
  1994年   2篇
  1993年   6篇
  1992年   8篇
  1991年   3篇
  1990年   8篇
  1989年   7篇
  1988年   9篇
  1987年   3篇
  1986年   3篇
  1985年   10篇
  1984年   4篇
  1983年   6篇
  1982年   4篇
  1981年   3篇
  1979年   6篇
  1978年   2篇
  1977年   8篇
  1976年   7篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
排序方式: 共有367条查询结果,搜索用时 15 毫秒
1.
2.
3.
Burgmer and Englich (2012) have reported that manipulating feelings of power can substantially improve performance on two motor tasks: golf and darts. We conducted two high-powered direct replications of the effects of power on golf, two online conceptual replications using mirror-tracing as a performance measure, and an additional conceptual replication using a cognitive performance measure (word-search). Overall, we found little to no effect of power on motor skill (d = 0.09, 95% CI[-0.07, 0.22], n = 603). We varied task difficulty, re-analyzed data without participants showing weak responses on manipulation checks, and tried adjusting performance scores for age, gender, and initial task skill. None of these secondary analyses revealed a strong effect of power on performance. A meta-analysis integrating our data with Burgmer & Englich leaves open the possibility that manipulating power could provide a modest boost in motor skill (d = 0.19, 95% CI [0.001, 0.38], n = 685). Unfortunately, the pattern of performance changes we observed was unrelated to group differences in perceived and rated power, suggesting that what motor effects do occur with this protocol may not be directly related to the construct of power. [Burgmer, P., &Englich, B. (2012). Bullseye!: How Power Improves Motor Performance. Social Psychological and Personality Science, 4(2), 224–232.]  相似文献   
4.
Manipulative positioning of Gyrodactylus colemanensis on individually isolated fry of Salmo gairdneri was used to examine the behavior of the parasite during colonization and the influence that site of invasion has on size and spatial distribution of ensuing infrapopulations. The parasite's initial response was to relocate posteriorly on the host's body; those that reached a fin usually end up on or adjacent to the fin's margin. Individuals monitored for up to 15 days postinfection moved both anteriorly and posteriorly on the body surface and relocated to new fins via the body surface. The parasite occurred most frequently on the caudal fin followed by the pectoral and pelvic fins, with length of the fin margin and fin activity appearing to be factors influencing the distribution. Infections originating from the head, flank, and caudal fin similarly rose and fell to extinction or near extinction on the host over 49 days at 10 C. The more posterior the site of invasion, the greater the proportion of parasites carried by the caudal fin. The study concludes that G. colemanensis is restricted in its distribution on the host and that the fin margins may serve as a reliable food source and favor transmission to new hosts.  相似文献   
5.
Urban areas are expanding rapidly in tropical regions, with potential to alter ecosystem dynamics. In particular, exotic grasses and atmospheric nitrogen (N) deposition simultaneously affect tropical urbanized landscapes, with unknown effects on properties like soil carbon (C) storage. We hypothesized that (H1) soil nitrate (NO3?) is elevated nearer to the urban core, reflecting N deposition gradients. (H2) Exotic grasslands have elevated soil NO3? and decreased soil C relative to secondary forests, with higher N promoting decomposer activity. (H3) Exotic grasslands have greater seasonality in soil NO3? vs. secondary forests, due to higher sensitivity of grassland soil moisture to rainfall. We predicted that NO3? would be positively related to dissolved organic C (DOC) production via changes in decomposer activity. We measured six paired grassland/secondary forest sites along a tropical urban‐to‐rural gradient during the three dominant seasons (hurricane, dry, and early wet). We found that (1) soil NO3? was generally elevated nearer to the urban core, with particularly clear spatial trends for grasslands. (2) Exotic grasslands had lower soil C than secondary forests, which was related to elevated decomposer enzyme activities and soil respiration. Unexpectedly, soil NO3? was negatively related to enzyme activities, and was lower in grasslands than forests. (3) Grasslands had greater soil NO3? seasonality vs. forests, but this was not strongly linked to shifts in soil moisture or DOC. Our results suggest that exotic grasses in tropical regions are likely to drastically reduce soil C storage, but that N deposition may have an opposite effect via suppression of enzyme activities. However, soil NO3? accumulation here was higher in urban forests than grasslands, potentially related to of aboveground N interception. Net urban effects on C storage across tropical landscapes will likely vary depending on the mosaic of grass cover, rates of N deposition, and responses by local decomposer communities.  相似文献   
6.
7.
8.
While it is well established that the shapes and sizes of shells are strongly phylogenetically controlled, little is known about the phylogenetic constraints on shell thickness. Yet, shell thickness is likely to be sensitive to environmental fluctuations and has the potential to illuminate environmental perturbations through deep time. Here we systematically quantify the thickness of the anterior brachiopod shell which protects the filtration chamber and is thus considered functionally homologous across higher taxa of brachiopods. Our data come from 66 genera and 10 different orders and shows well-defined upper and lower boundaries of anterior shell thickness. For Ordovician and Silurian brachiopods we find significant order-level differences and a trend of increasing shell thickness with water depth. Modern (Cenozoic) brachiopods, by comparison, fall into the lower half of observed shell thicknesses. Among Ordovician–Silurian brachiopods, older stocks commonly have thicker shells, and thick-shelled taxa contributed more prominently to the Great Ordovician Biodiversification but suffered more severely during the Late Ordovician Mass Extinction. Our data highlight a significant reduction in maximum and minimum shell thickness following the Late Ordovician mass extinction. This points towards stronger selection pressure for energy-efficient shell secretion during times of crisis.  相似文献   
9.
Humid tropical forests are often characterized by large nitrogen (N) pools, and are known to have large potential N losses. Although rarely measured, tropical forests likely maintain considerable biological N fixation (BNF) to balance N losses. We estimated inputs of N via BNF by free-living microbes for two tropical forests in Puerto Rico, and assessed the response to increased N availability using an on-going N fertilization experiment. Nitrogenase activity was measured across forest strata, including the soil, forest floor, mosses, canopy epiphylls, and lichens using acetylene (C2H2) reduction assays. BNF varied significantly among ecosystem compartments in both forests. Mosses had the highest rates of nitrogenase activity per gram of sample, with 11 ± 6 nmol C2H2 reduced/g dry weight/h (mean ± SE) in a lower elevation forest, and 6 ± 1 nmol C2H2/g/h in an upper elevation forest. We calculated potential N fluxes via BNF to each forest compartment using surveys of standing stocks. Soils and mosses provided the largest potential inputs of N via BNF to these ecosystems. Summing all components, total background BNF inputs were 120 ± 29 μg N/m2/h in the lower elevation forest, and 95 ± 15 μg N/m2/h in the upper elevation forest, with added N significantly suppressing BNF in soils and forest floor. Moisture content was significantly positively correlated with BNF rates for soils and the forest floor. We conclude that BNF is an active biological process across forest strata for these tropical forests, and is likely to be sensitive to increases in N deposition in tropical regions.  相似文献   
10.

Background  

Tenascins are a family of glycoproteins found primarily in the extracellular matrix of embryos where they help to regulate cell proliferation, adhesion and migration. In order to learn more about their origins and relationships to each other, as well as to clarify the nomenclature used to describe them, the tenascin genes of the urochordate Ciona intestinalis, the pufferfish Tetraodon nigroviridis and Takifugu rubripes and the frog Xenopus tropicalis were identified and their gene organization and predicted protein products compared with the previously characterized tenascins of amniotes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号