首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7368篇
  免费   693篇
  国内免费   414篇
  2024年   1篇
  2023年   86篇
  2022年   115篇
  2021年   304篇
  2020年   299篇
  2019年   330篇
  2018年   313篇
  2017年   265篇
  2016年   351篇
  2015年   494篇
  2014年   555篇
  2013年   610篇
  2012年   761篇
  2011年   641篇
  2010年   362篇
  2009年   365篇
  2008年   389篇
  2007年   330篇
  2006年   288篇
  2005年   238篇
  2004年   207篇
  2003年   175篇
  2002年   152篇
  2001年   151篇
  2000年   116篇
  1999年   100篇
  1998年   66篇
  1997年   67篇
  1996年   65篇
  1995年   50篇
  1994年   45篇
  1993年   29篇
  1992年   35篇
  1991年   19篇
  1990年   19篇
  1989年   17篇
  1988年   15篇
  1987年   13篇
  1986年   9篇
  1985年   15篇
  1984年   7篇
  1983年   3篇
  1982年   3篇
排序方式: 共有8475条查询结果,搜索用时 15 毫秒
1.
The absorption of phospholipid may improve the fluidity of membrane and enzyme activities. Phospholipids also play a role in promoting Caveolae formation and membrane synthesis. Caveolin-1 has a significant effect on signaling pathways involved in regulating cell proliferation and stress responsiveness. Thus, we can speculate that Caveolin-1 could affect the sense of environmental stress. We use Chang liver cell line to investigate the ability of Caveolin-1 to modulate the cellular response to ethanol injury. Caveolin-1 downregulate cells (Cav-1?/?) were established by stable transfecting with psiRNA-CAV1 plasmids, which were more sensitive to toxic effects of ethanol than the untransfected parental cells (WT). Releasing of ALT and electric conductivity were changed significantly in Cav-1?/? cells compared with WT. Caveolin-1 gene silencing could obviously down-regulate the activities of protein kinase C-α (PKC-α) and phospho-p42/44 MAP kinase, indicating cell proliferation and self-repairing abilities were inhibited. However, the levels of Caveolin-1 and PKC-α were increased by phosphatidylcholine administration. The results indicated that the inhibition of lipid peroxidation by phosphatidylcholine could lead to the prevention of membrane disruption, which closely correlated with the level of Caveolin-1. Since the protective effects of phosphatidylcholine against ethanol-induced lipid peroxidation might be regulated by phospholipid-PKC-α signaling pathway, related with Caveolin-1, the potential effects of phosphatidylcholine on membranes need to be verified.  相似文献   
2.
3.
Pleiotrophin (Ptn) plays an important role in bone growth through regulating osteoblasts’ functions. The underlying signaling mechanisms are not fully understood. In the current study, we found that Ptn induced heparin-binding epidermal growth factor (HB-EGF) release to trans-activate EGF-receptor (EGFR) in both primary osteoblasts and osteoblast-like MC3T3-E1 cells. Meanwhile, Ptn activated Akt and Erk signalings in cultured osteoblasts. The EGFR inhibitor AG1478 as well as the monoclonal antibody against HB-EGF (anti-HB-EGF) significantly inhibited Ptn-induced EGFR activation and Akt and Erk phosphorylations in MC3T3-E1 cells and primary osteoblasts. Further, EGFR siRNA depletion or dominant negative mutation suppressed also Akt and Erk activation in MC3T3-E1 cells. Finally, we observed that Ptn increased alkaline phosphatase (ALP) activity and inhibited dexamethasone (Dex)-induced cell death in both MC3T3-E1 cells and primary osteoblasts, such effects were alleviated by AG1478 or anti-HB-EGF. Together, these results suggest that Ptn-induced Akt/Erk activation and some of its pleiotropic functions are mediated by EGFR trans-activation in cultured osteoblasts.  相似文献   
4.
Oxidative stress is mechanistically implicated in the pathogenesis of myocardial injury and the subsequent fibrogenic tissue remodeling. Therapies targeting oxidative stress in the process of myocardial fibrogenesis are still lacking and thus remain as an active research area in myocardial injury management. The current study evaluated the effects of a NADPH oxidase inhibitor, apocynin, on the production of reactive oxygen species and the development of myocardial fibrogenesis in isoproterenol (ISO)-induced myocardial injury mouse model. The results revealed a remarkable effect of apocynin on attenuating the development of myocardial necrotic lesions, inflammation and fibrogenesis. Additionally, the protective effects of apocynin against myocardial injuries were associated with suppressed expression of an array of genes implicated in inflammatory and fibrogenic responses. Our study thus provided for the first time the histopathological and molecular evidence supporting the therapeutic value of apocynin against the development of myocardial injuries, in particular, myocardial fibrogenesis, which will benefit the mechanism-based drug development targeting oxidative stress in preventing and/or treating related myocardial disorders.  相似文献   
5.
6.
【目的】比较敲除meq基因的马立克氏病毒(MDV)与标准疫苗株CVI988/Rispens对MDV超强毒GX0101攻毒的免疫保护作用。【方法】本实验将1日龄SPF鸡120只随机分成4组,每组30只,分别饲养在正压过滤空气的SPF动物饲养隔离罩内。1日龄时,第1组鸡以2000PFU/只的剂量颈部皮下接种SC9-1;第2组鸡以2000PFU/只的剂量颈部皮下接种CVI988/Rispens;第3、4组为不免疫攻毒对照组。免疫接种后5 d后,第1、2、3组分别以2000PFU/只的剂量腹腔接种MDV GX0101。饲养至90日龄,记录死亡情况,对死亡鸡只剖检,并取疑似马立克特有病变脏器做病理切片。期间,检测不同免疫状态下病毒GX0101的增殖动态以及禽流感、新城疫灭活苗在鸡体诱导产生抗体的水平。对含有MDV母源抗体的海蓝褐鸡的试验方案与SPF鸡一致。【结果】SC9-1株免疫对感染MDV GX0101攻击SPF鸡、海兰褐鸡均提供100%的免疫保护作用;CVI988/Rispens对SPF鸡、海兰褐鸡分别提供86.7%、93%的免疫保护作用。未免疫SPF鸡攻毒组死亡率为53.3%,肿瘤率为16.7%;未免疫海兰褐鸡攻毒组死亡率为36.7%,肿瘤率为6.67%;相比,空白对照组鸡只没有任何病变及死亡。荧光定量结果显示,淋巴细胞和羽毛囊DNA中,SC9-1免疫组鸡体内GX0101的病毒拷贝数显著低于CVI988/Rispens免疫组。血凝抑制试验结果显示,SC9-1免疫攻毒组鸡的产生的AIV、NDV抗体水平高于CVI988/Rispens免疫攻毒组。【结论】SC9-1株免疫无论在SPF鸡还是含有MDV母源抗体的海兰褐鸡均能提供比CVI988/Rispens更好的免疫保护效果。  相似文献   
7.
In this work we evaluate the interaction of two optogenetic protein variants (CIB1, CIBN) with their complementary protein CRY2 by single-molecule tools in cell-free extracts. After validating the blue light induced co-localization of CRY2 and CIB1/N by Förster resonance energy transfer (FRET) in live cells, a fluorescence correlation spectroscopy (FCS) based method was developed to quantitatively determine the in vitro association of the extracted proteins. Our experiments suggest that CIB1, in comparison with CIBN, possesses a better coupling efficiency with CRY2 due to its intact protein structure and lower diffusion rate within 300 s detection window.  相似文献   
8.
TRAF family member-associated NF-κB activator (TANK) is a negative regulator of canonical NF-κB signaling in the Toll-like receptor- and B-cell receptor-mediated signaling pathways. However, functions of TANK in viral infection-mediated NF-κB activation remain unclear. Here, we reported that TANK was cleaved by encephalomyocarditis virus 3C at the 197 and 291 glutamine residues, which depends on its cysteine protease activity. In addition, encephalomyocarditis virus 3C impaired the ability of TANK to inhibit TRAF6-mediated NF-κB signaling. Interestingly, we found that several viral proteases encoded by the foot and mouth disease virus, porcine reproductive and respiratory syndrome virus, and equine arteritis virus also cleaved TANK. Our results suggest that TANK is a novel target of some viral proteases, indicating that some positive RNA viruses have evolved to utilize their major proteases to regulate NF-κB activation.  相似文献   
9.
Serotonin and oxytocin influence aggressive and anxiety‐like behaviors, though it is unclear how the two may interact. That the oxytocin receptor is expressed in the serotonergic raphe nuclei suggests a mechanism by which the two neurotransmitters may cooperatively influence behavior. We hypothesized that oxytocin acts on raphe neurons to influence serotonergically mediated anxiety‐like, aggressive and parental care behaviors. We eliminated expression of the oxytocin receptor in raphe neurons by crossing mice expressing Cre recombinase under control of the serotonin transporter promoter (Slc6a4) with our conditional oxytocin receptor knockout line. The knockout mice generated by this cross are normal across a range of behavioral measures: there are no effects for either sex on locomotion in an open‐field, olfactory habituation/dishabituation or, surprisingly, anxiety‐like behaviors in the elevated O and plus mazes. There was a profound deficit in male aggression: only one of 11 raphe oxytocin receptor knockouts showed any aggressive behavior, compared to 8 of 11 wildtypes. In contrast, female knockouts displayed no deficits in maternal behavior or aggression. Our results show that oxytocin, via its effects on raphe neurons, is a key regulator of resident‐intruder aggression in males but not maternal aggression. Furthermore, this reduction in male aggression is quite different from the effects reported previously after forebrain or total elimination of oxytocin receptors. Finally, we conclude that when constitutively eliminated, oxytocin receptors expressed by serotonin cells do not contribute to baseline anxiety‐like behaviors or maternal care.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号