首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13516篇
  免费   1348篇
  国内免费   6篇
  2021年   159篇
  2020年   172篇
  2019年   213篇
  2018年   231篇
  2017年   218篇
  2016年   311篇
  2015年   611篇
  2014年   580篇
  2013年   742篇
  2012年   996篇
  2011年   954篇
  2010年   540篇
  2009年   541篇
  2008年   766篇
  2007年   686篇
  2006年   720篇
  2005年   675篇
  2004年   639篇
  2003年   551篇
  2002年   510篇
  2001年   267篇
  2000年   230篇
  1999年   232篇
  1998年   155篇
  1997年   128篇
  1996年   117篇
  1995年   95篇
  1994年   124篇
  1993年   79篇
  1992年   152篇
  1991年   144篇
  1990年   146篇
  1989年   145篇
  1988年   133篇
  1987年   115篇
  1986年   102篇
  1985年   90篇
  1984年   111篇
  1983年   97篇
  1982年   76篇
  1981年   93篇
  1980年   64篇
  1979年   95篇
  1978年   80篇
  1977年   64篇
  1976年   70篇
  1975年   59篇
  1974年   68篇
  1973年   65篇
  1969年   61篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
A diversity of tools is available for identification of variants from genome sequence data. Given the current complexity of incorporating external software into a genome analysis infrastructure, a tendency exists to rely on the results from a single tool alone. The quality of the output variant calls is highly variable however, depending on factors such as sequence library quality as well as the choice of short-read aligner, variant caller, and variant caller filtering strategy. Here we present a two-part study first using the high quality ‘genome in a bottle’ reference set to demonstrate the significant impact the choice of aligner, variant caller, and variant caller filtering strategy has on overall variant call quality and further how certain variant callers outperform others with increased sample contamination, an important consideration when analyzing sequenced cancer samples. This analysis confirms previous work showing that combining variant calls of multiple tools results in the best quality resultant variant set, for either specificity or sensitivity, depending on whether the intersection or union, of all variant calls is used respectively. Second, we analyze a melanoma cell line derived from a control lymphocyte sample to determine whether software choices affect the detection of clinically important melanoma risk-factor variants finding that only one of the three such variants is unanimously detected under all conditions. Finally, we describe a cogent strategy for implementing a clinical variant detection pipeline; a strategy that requires careful software selection, variant caller filtering optimizing, and combined variant calls in order to effectively minimize false negative variants. While implementing such features represents an increase in complexity and computation the results offer indisputable improvements in data quality.  相似文献   
2.
3.
4.
5.
6.
SNAP-25, synaptosomal associated protein of 25 kDa, is reported to be a t-SNARE (target receptor associated with the presynaptic plasma membrane) involved in the docking and fusion of synaptic vesicles. We present here the first ultrastructural localization of SNAP-25 in intact neurons by pre-embedding EM immunocytochemistry in rat brains, hippocampal slice cultures, and PC12 cells. In differentiated neurons, SNAP-25 labeling was clearly membrane-associated. The labeling was most prominent in the plasma membrane of axons and excluded from the plasma membranes of soma and dendrites. Furthermore, SNAP-25 did not appear to be restricted to the synaptic junctions. SNAP-25 labeling was seen in the cytoplasm of the soma and large dendrites, mostly associated with the Golgi complexes. There were also some SNAP-25 labeled tubulo-vesicular structures in the cytoplasm of the soma and the axons, but rarely in the smaller dendrites. In PC12 cells, after 5–10 minutes of high potassium (75 mM) stimulation in the presence of HRP, SNAP-25 labeling appeared, additionally, on HRP-filled early endosomes. After a longer (20–30 minutes) HRP incubation, most of the later stage endosomes and lysosomes were loaded with HRP but they were negative for SNAP-25. These results suggest that SNAP-25 is sorted out of these late endosomal compartments, and that the bulk of the SNAP-25 protein is probably recycled back to the axolemma from the early endosomes. In contrast, in those samples which were incubated with HRP for longer periods, there were still some SNAP-25–positive vesicular structures which were HRP-negative. These structures most likely represent anterograde vesicles that carry newly synthesized SNAP-25 from the soma to the axolemma by axonal transport. SNAP-25 appears to be sorted at the Golgi complex to reach the axolemma specifically. Its widespread distribution all along the axolemma does not support the view of SNAP-25 as a t-SNARE limited for synaptic exocytosis.  相似文献   
7.
Host recognition of mycobacterial surface molecules occurs through toll like receptors (TLR) 2 and 6. The adaptor protein TIRAP mediates down stream signalling of TLR2 and 4, and polymorphisms in the TIRAP gene (TIRAP) have been associated with susceptibility and resistance to tuberculosis (TB) in adults. In order to investigate the role of polymorphic variation in TIRAP in childhood TB in South Africa, which has one of the highest TB incidence rates in the world, we screened the entire open reading frame of TIRAP for sequence variation in two cohorts of childhood TB from different ethnic groups (Xhosa and mixed ancestry). We identified 13 SNPs, including seven previously unreported, in the two cohorts, and found significant differences in frequency of the variants between the two ethnic groups. No differences in frequency between individual SNPs or combinations were found between TB cases and controls in either cohort. However the 558C→T SNP previously associated with TB meningitis (TBM) in a Vietnamese population was found to be associated with TBM in the mixed ancestry group. Polymorphisms in TIRAP do not appear to be involved in childhood TB susceptibility in South Africa, but may play a role in determining occurrence of TBM.  相似文献   
8.
Although numerous people grow up speaking more than one language, the impact of bilingualism on brain developing neuroanatomy is still poorly understood. This study aimed to determine whether the changes in the mean fractional-anisotropy (MFA) of language pathways are different between bilingual and monolingual children. Simultaneous-bilinguals, sequential-bilinguals and monolingual, male and female 10–13 years old children participated in this longitudinal study over a period of two years. We used diffusion tensor tractography to obtain mean fractional-anisotropy values of four language related pathways and one control bundle: 1-left-inferior-occipitofrontal fasciculus/lIFOF, 2-left-arcuate fasciculus/lAF/lSLF, 3-bundle arising from the anterior part of corpus-callosum and projecting to orbital lobe/AC-OL, 4-fibres emerging from anterior-midbody of corpus-callosum (CC) to motor cortices/AMB-PMC, 5- right-inferior-occipitofrontal fasciculus rIFOF as the control pathway unrelated to language. These values and their rate of change were compared between 3 groups. FA-values did not change significantly over two years for lAF/lSLF and AC-OL. Sequential-bilinguals had the highest degree of change in the MFA value of lIFOF, and AMB-PMC did not present significant group differences. The comparison of MFA of lIFOF yielded a significantly higher FA-value in simultaneous bilinguals compared to monolinguals. These findings acknowledge the existing difference of the development of the semantic processing specific pathway between children with different semantic processing procedure. These also support the hypothesis that age of second language acquisition affects the maturation and myelination of some language specific white-matter pathways.  相似文献   
9.
Herbivory is a fundamental process that controls primary producer abundance and regulates energy and nutrient flows to higher trophic levels. Despite the recent proliferation of small‐scale studies on herbivore effects on aquatic plants, there remains limited understanding of the factors that control consumer regulation of vascular plants in aquatic ecosystems. Our current knowledge of the regulation of primary producers has hindered efforts to understand the structure and functioning of aquatic ecosystems, and to manage such ecosystems effectively. We conducted a global meta‐analysis of the outcomes of plant–herbivore interactions using a data set comprised of 326 values from 163 studies, in order to test two mechanistic hypotheses: first, that greater negative changes in plant abundance would be associated with higher herbivore biomass densities; second, that the magnitude of changes in plant abundance would vary with herbivore taxonomic identity. We found evidence that plant abundance declined with increased herbivore density, with plants eliminated at high densities. Significant between‐taxa differences in impact were detected, with insects associated with smaller reductions in plant abundance than all other taxa. Similarly, birds caused smaller reductions in plant abundance than echinoderms, fish, or molluscs. Furthermore, larger reductions in plant abundance were detected for fish relative to crustaceans. We found a positive relationship between herbivore species richness and change in plant abundance, with the strongest reductions in plant abundance reported for low herbivore species richness, suggesting that greater herbivore diversity may protect against large reductions in plant abundance. Finally, we found that herbivore–plant nativeness was a key factor affecting the magnitude of herbivore impacts on plant abundance across a wide range of species assemblages. Assemblages comprised of invasive herbivores and native plant assemblages were associated with greater reductions in plant abundance compared with invasive herbivores and invasive plants, native herbivores and invasive plants, native herbivores and mixed‐nativeness plants, and native herbivores and native plants. By contrast, assemblages comprised of native herbivores and invasive plants were associated with lower reductions in plant abundance compared with both mixed‐nativeness herbivores and native plants, and native herbivores and native plants. However, the effects of herbivore–plant nativeness on changes in plant abundance were reduced at high herbivore densities. Our mean reductions in aquatic plant abundance are greater than those reported in the literature for terrestrial plants, but lower than aquatic algae. Our findings highlight the need for a substantial shift in how biologists incorporate plant–herbivore interactions into theories of aquatic ecosystem structure and functioning. Currently, the failure to incorporate top‐down effects continues to hinder our capacity to understand and manage the ecological dynamics of habitats that contain aquatic plants.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号