首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   29篇
  2018年   2篇
  2017年   4篇
  2016年   3篇
  2015年   7篇
  2014年   6篇
  2013年   9篇
  2012年   11篇
  2011年   7篇
  2010年   8篇
  2009年   6篇
  2008年   16篇
  2007年   16篇
  2006年   8篇
  2005年   8篇
  2004年   14篇
  2003年   11篇
  2002年   18篇
  2001年   6篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1990年   4篇
  1989年   6篇
  1988年   2篇
  1987年   3篇
  1986年   5篇
  1985年   6篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1977年   4篇
  1976年   1篇
  1974年   2篇
  1972年   2篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1966年   4篇
  1965年   1篇
  1962年   1篇
  1960年   2篇
  1948年   2篇
  1943年   1篇
  1941年   1篇
  1930年   1篇
排序方式: 共有243条查询结果,搜索用时 156 毫秒
1.
The bacterial pathogen Listeria monocytogenes displays the remarkable ability to reorganize the actin cytoskeleton within host cells as a means for promoting cell-to-cell transfer of the pathogen, in a manner that evades humoral immunity. In a series of events commencing with the biosynthesis of the bacterial surface protein ActA, host cell actin and many actin-associated protein self-assemble to from rocket-tail structures that continually grow at sites proximal to the bacterium and depolymerize distally. Widespread interest in the underlying molecular mechanism of Listeria locomotion stems from the likelihood that the dynamic remodeling of the host cell actin cytoskeleton at the cell's leading edge involves mechanistically analogous interactions. Recent advances in our understanding of these fundamental cytoskeletal rearrangements have been achieved through a clearer recognition of the central role of oligo-proline sequence repeats present in ActA, and these findings provide a basis for inferring the role of analogous host cell proteins in the force-producing and position-securing steps in pseudopod and lamellipod formation at the peripheral membrane.  相似文献   
2.
A 41-kilodalton macrophage capping protein (MCP) has been isolated which is capable of forming complexes with actin monomers in addition to capping the barbed ends of actin filaments (Southwick & DiNubile, 1986). The protein is calcium activated in a fully reversible manner. Using kinetic assays, we determined a capping constant, defined here as a modified Kd, of 1 nM and a Kd of 3-4 microM for MCP-actin monomer complex formation. MCP weakly nucleates actin polymerization: more than 0.5 microM MCP is necessary to shorten the lag period, and 1 microM MCP at an actin/MCP ratio of 10 reduces the average length of actin filaments to about 200 molecules per filament. We determined that the actin nucleus that survives MCP inactivation contains a minimum number of five actin molecules. These experiments also make a point with respect to the interpretation of the prolongation of the lag period. We directly demonstrate that in the presence of an actin binding protein a prolongation of the lag period can be associated with increased nucleation, contrary to the usual interpretation in the literature that it indicates no or decreased nucleation by the actin binding protein.  相似文献   
3.
4.
5.

Background

The green bottle fly maggot, Lucilia sericata, is a species with importance in medicine, agriculture and forensics. Improved understanding of this species’ biology is of great potential benefit to many research communities. MicroRNAs (miRNA) are a short non-protein coding regulatory RNA, which directly regulate a host of protein coding genes at the translational level. They have been shown to have developmental and tissue specific distributions where they impact directly on gene regulation. In order to improve understanding of the biology of L. sericata maggots we have performed small RNA-sequencing of their secretions and tissue at different developmental stages.

Results

We have successfully isolated RNA from the secretions of L. sericata maggots. Illumina small RNA-sequencing of these secretions and the three tissues (crop, salivary gland, gut) revealed that the most common small RNA fragments were derived from ribosomal RNA and transfer RNAs of both insect and bacterial origins. These RNA fragments were highly specific, with the most common tRNAs, such as GlyGCC, predominantly represented by reads derived from the 5’ end of the mature maggot tRNA. Each library also had a unique profile of miRNAs with a high abundance of miR-10-5p in the maggot secretions and gut and miR-8 in the food storage organ the crop and salivary glands. The pattern of small RNAs in the bioactive maggot secretions suggests they originate from a combination of saliva, foregut and hindgut tissues. Droplet digital RT-PCR validation of the RNA-sequencing data shows that not only are there differences in the tissue profiles for miRNAs and small RNA fragments but that these are also modulated through developmental stages of the insect.

Conclusions

We have identified the small-RNAome of the medicinal maggots L. sericata and shown that there are distinct subsets of miRNAs expressed in specific tissues that also alter during the development of the insect. Furthermore there are very specific RNA fragments derived from other non-coding RNAs present in tissues and in the secretions. This new knowledge has applicability in diverse research fields including wound healing, agriculture and forensics.  相似文献   
6.
7.
Spatially restricting cAMP production to discrete subcellular locations permits selective regulation of specific functional responses. But exactly where and how cAMP signaling is confined is not fully understood. Different receptors and adenylyl cyclase isoforms responsible for cAMP production are not uniformly distributed between lipid raft and non-lipid raft domains of the plasma membrane. We sought to determine the role that these membrane domains play in organizing cAMP responses in HEK293 cells. The freely diffusible FRET-based biosensor Epac2-camps was used to measure global cAMP responses, while versions of the probe targeted to lipid raft (Epac2-MyrPalm) and non-raft (Epac2-CAAX) domains were used to monitor local cAMP production near the plasma membrane. Disruption of lipid rafts by cholesterol depletion selectively altered cAMP responses produced by raft-associated receptors. The results indicate that receptors associated with lipid raft as well as non-lipid raft domains can contribute to global cAMP responses. In addition, basal cAMP activity was found to be significantly higher in non-raft domains. This was supported by the fact that pharmacologic inhibition of adenylyl cyclase activity reduced basal cAMP activity detected by Epac2-CAAX but not Epac2-MyrPalm or Epac2-camps. Responses detected by Epac2-CAAX were also more sensitive to direct stimulation of adenylyl cyclase activity, but less sensitive to inhibition of phosphodiesterase activity. Quantitative modeling was used to demonstrate that differences in adenylyl cyclase and phosphodiesterase activities are necessary but not sufficient to explain compartmentation of cAMP associated with different microdomains of the plasma membrane.  相似文献   
8.
To explore the effects immune‐isolating encapsulation has on the insulin secretion of pancreatic islets and to improve our ability to quantitatively describe the glucose‐stimulated insulin release (GSIR) of pancreatic islets, we conducted dynamic perifusion experiments with isolated human islets. Free (unencapsulated) and hydrogel encapsulated islets were perifused, in parallel, using an automated multi‐channel system that allows sample collection with high temporal resolution. Results indicated that free human islets secrete less insulin per unit mass or islet equivalent (IEQ) than murine islets and with a less pronounced first‐phase peak. While small microcapsules (d = 700 µm) caused only a slightly delayed and blunted first‐phase insulin response compared to unencapsulated islets, larger capsules (d = 1,800 µm) completely blunted the first‐phase peak and decreased the total amount of insulin released. Experimentally obtained insulin time‐profiles were fitted with our complex insulin secretion computational model. This allowed further fine‐tuning of the hormone‐release parameters of this model, which was implemented in COMSOL Multiphysics to couple hormone secretion and nutrient consumption kinetics with diffusive and convective transport. The results of these GSIR experiments, which were also supported by computational modeling, indicate that larger capsules unavoidably lead to dampening of the first‐phase insulin response and to a sustained‐release type insulin secretion that can only slowly respond to changes in glucose concentration. Bioartificial pancreas type devices can provide long‐term and physiologically desirable solutions only if immunoisolation and biocompatibility considerations are integrated with optimized nutrient diffusion and insulin release characteristics by design.  相似文献   
9.
10.
A total of 2,245 extracts, derived from 449 marine fungi cultivated in five types of media, were screened against the C4 plant enzyme pyruvate phosphate dikinase (PPDK), a potential herbicide target. Extracts from several fungal isolates selectively inhibited PPDK. Bioassay-guided fractionation of one isolate led to the isolation of the known compound unguinol, which inhibited PPDK with a 50% inhibitory concentration of 42.3 ± 0.8 μM. Further kinetic analysis revealed that unguinol was a mixed noncompetitive inhibitor of PPDK with respect to the substrates pyruvate and ATP and an uncompetitive inhibitor of PPDK with respect to phosphate. Unguinol had deleterious effects on a model C4 plant but no effect on a model C3 plant. These results indicate that unguinol inhibits PPDK via a novel mechanism of action which also translates to an herbicidal effect on whole plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号