首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.

Background

Nasopharyngeal carcinoma (NPC) is known for its high metastatic potential and locoregional recurrence, although the molecular alterations that are driving NPC metastasis remain unclear at this time. This study aimed to examine the expression of fibulin-5 in NPC, correlate the results with clinicopathological variables and survival, and to investigate the role of fibulin-5 in human NPC cell lines.

Material and Methods

Standard semi-quantitative-RT-PCR, quantitative-RT-PCR, immunoblotting, and immunohistochemistry were used to investigate the mRNA and protein expression profiles of fibulin-5 in normal and NPC tissues. Immunohistochemistry of fibulin-5 was correlated with clinicopathological characteristics by univariate analyses. NPC cells overexpressing fibulin-5 or fibulin-5-siRNA cells were generated by stable transfection to characterize the molecular mechanisms of fibulin-5-elicited cell growth and metastasis.

Results

Our results demonstrated that fibulin-5 overexpression in NPC specimens and significantly correlated with advanced tumor metastasis indicating a poor 5-year overall survival. Fibulin-5 was mainly expressed in the nucleus in human NPC specimens and cell lines. Functionally, fibulin-5 overexpression yielded fast growth in NPC cells. In addition, fibulin-5 promotes cell metastasis in NPC cells through increased FLJ10540 and phosphor-AKT activity. In contrast, siRNA depletion of fibulin-5 suppressed FLJ10540 expression and phosphor-AKT activity. Suppression of either fibulin-5 or FLJ10540 can cause significant inhibition with regards to cell motility in NPC cells. Finally, immunohistochemical analysis of human aggressive NPC specimens showed a significant and positive correlation between fibulin-5 and FLJ10540 expression.

Conclusion

Higher fibulin-5 expression is not only an important indicator of poor survival, but also contributes to the development of new therapeutic strategies in the FLJ10540/AKT pathway for NPC treatment.  相似文献   
2.
The centrosomal protein ninein has been identified as a microtubules minus end capping, centriole position, and anchoring protein, but the true physiological function remains to be determined. In this report, using immunofluorescence analysis and GFP-fusions we show that coiled-coil II domain (CCII domain, 1303-2096) co-localized with gamma-tubulin and centrin at the centrosome. We further narrow down within 83 amino acids and classify a new centrosomal targeting signal. Interestingly, antibodies raised against CCII domain reveal that ninein protein declines from spindle poles during mitosis, but reaccumulates at centrosomes at the end of cell division. Moreover, the data also suggest that fragment 1783-1866 may be attributed to declined signal of ninein. In kinase assay, we show that CCII domain could readily be phosphorylated by AIK and PKA. Taken together, our results suggest that ninein protein contains two distinct subdomains which are required for targeting and regulating asymmetry centrosomes. Importantly, the decline of ninein during mitosis implies that this centrosomal protein may play a role to regulate the process of chromosome segregation without discrimination. The model we propose here will foster a clearer picture of how two asymmetric centrosomes could direct and ensure the correct segregation of chromosomes during the mitotic stage.  相似文献   
3.
Stimulation of the proapoptotic tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors, death receptors 4 (DR4) and 5 (DR5), conventionally induces caspase-dependent apoptosis in tumor cells. Here we report that stimulation of DR4 and/or DR5 by the agonistic protein KD548-Fc, an Fc-fused DR4/DR5 dual-specific Kringle domain variant, activates plasma membrane-associated Nox1 NADPH oxidase to generate superoxide anion and subsequently accumulates intracellular reactive oxygen species (ROS), leading to sustained c-Jun N-terminal kinase activation and eventual apoptotic cell death in human HeLa and Jurkat tumor cells. KD548-Fc treatment induces the formation of a DR4/DR5 signaling complex containing riboflavin kinase (RFK), Nox1, the Nox1 subunits (Rac1, Noxo1, and Noxa1), TNF receptor-associated death domain (TRADD), and TNF receptor-associated factor 2 (TRAF2). Depletion of RFK, but not the Nox1 subunits, TRADD and TRAF2, failed to recruit Nox1 and Rac1 to DR4 and DR5, demonstrating that RFK plays an essential role in linking DR4/DR5 with Nox1. Knockdown studies also reveal that RFK, TRADD, and TRAF2 play critical, intermediate, and negligible roles, respectively, in the KD548-Fc-mediated ROS accumulation and downstream signaling. Binding assays using recombinantly expressed proteins suggest that DR4/DR5 directly interact with cytosolic RFK through RFK-binding regions within the intracellular death domains, and TRADD stabilizes the DR4/DR5-RFK complex. Our results suggest that DR4 and DR5 have a capability to activate Nox1 by recruiting RFK, resulting in ROS-mediated apoptotic cell death in tumor cells.  相似文献   
4.
The nucleolar 58-kDa microspherule protein (MSP58) protein is a candidate oncogene implicated in modulating cellular proliferation and malignant transformation. In this study, we show that knocking down MSP58 expression caused aneuploidy and led to apoptosis, whereas ectopic expression of MSP58 regulated cell proliferation in a context-dependent manner. Specifically, ectopic expression of MSP58 in normal human IMR90 and Hs68 diploid fibroblasts, the H184B5F5/M10 mammary epithelial cell line, HT1080 fibrosarcoma cells, primary mouse embryonic fibroblasts, and immortalized NIH3T3 fibroblasts resulted in induction of premature senescence, an enlarged and flattened cellular morphology, and increased senescence-associated β-galactosidase activity. MSP58-driven senescence was strictly dependent on the presence of functional p53 as revealed by the fact that normal cells with p53 knockdown by specific shRNA or cells with a mutated or functionally impaired p53 pathway were effective in bypassing MSP58-induced senescence. At least two senescence mechanisms are induced by MSP58. First, MSP58 activates the DNA damage response and p53/p21 signaling pathways. Second, MSP58, p53, and the SWI/SNF chromatin-remodeling subunit Brahma-related gene 1 (BRG1) form a ternary complex on the p21 promoter and collaborate to activate p21. Additionally, MSP58 protein levels increased in cells undergoing replicative senescence and stress-induced senescence. Notably, the results of analyzing expression levels of MSP58 between tumors and matched normal tissues showed significant changes (both up- and down-regulation) in its expression in various types of tumors. Our findings highlight new aspects of MSP58 in modulating cellular senescence and suggest that MSP58 has both oncogenic and tumor-suppressive properties.  相似文献   
5.
DNA microarray has been widely used to examine gene expression profile of different human tumors. The information generated from microarray analysis usually represents the overall range of cancer-associated abnormality associated with gene regulation. In order to identify key regulatory genes involved in carcinogenesis of human cancer, hypothesis driven data mining of the microarray data plus experimental validation becomes a critical approach in the post-genome era. Here, we present an integrative genomic analysis of published microarray data and homolog gene database. Over 20,000 genes were examined to reveal 16 genes specific to vertebrates, cell cycle G2/M regulated, and overexpressed in human HCC. Using Affymetrix microarray analysis, we found that all 16 genes were up-regulated in human HCC. Among these 16 genes, we experimentally validated the up-regulation of receptor for hyaluronan-mediated motility (RHAMM) in different cell model systems. We first confirmed elevation of RHAMM in the G2/M phase of synchronized HeLa cells. We also found that RHAMM had an elevated level of expression in all the HCC samples we examined and it was induced during the G2/M phase of regenerating mouse hepatocytes after partial hepatectomy. Thus, the expression of RHAMM appears to be tightly regulated during mammalian cell cycle G2/M progression. The ectopic overexpression of RHAMM in 293T cells resulted in the accumulation of cells at G2/M phase. RHAMM-induced mitotic arrest of cells was predominantly in the prophase. Taken together, using an integrated functional genomic approach, we have uncovered a set of genes that may play specific roles in cell cycle progression and in HCC development. To elucidate the function of these genes in cell cycle regulation may shed light on the control mechanism of human HCC in the future.  相似文献   
6.
Bivalent or bispecific binding activity of proteins has been mainly achieved by assembling two or more domains in a single molecule. Here we report bivalent/bispecific single-domain proteins based on the kringle domain (KD), which has a cystine knot structural motif and is highly tolerant of sequence modifications. KD has seven loops protruding from the core fold into two largely opposite directions, dubbed loop cluster regions (LCRs) 1 and 2. Mutational analysis of previously isolated agonistic KD variants against human death receptors (DRs) 4 and 5 revealed that they can simultaneously recognize two target molecules of DR4 and/or DR5 via the two independent binding sites of LCR1 and LCR2. Binding loop mapping of yeast-surface-displayed KD mutants identified high-affinity target binding loops in LCR2, which were then grafted into conformationally compatible loops located on the opposite side of LCR1 within the same or different KD variants to generate bivalent/bispecific KD variants against DR4 and/or DR5 with improved affinity. The loop-grafted bivalent/bispecific KD variants showed enhanced cell-death-inducing activity of tumor cells compared with their monovalent/monospecific and bivalent/monospecific counterparts, demonstrating an advantage of bispecific targeting to both DR4 and DR5 over the targeting of only one of the two pro-apoptotic receptors. Our results suggest that the KD with the two independent binding surfaces for target recognition is an appropriate scaffold for the development of bivalency and/or bispecificity by loop grafting on the single domain, which offers a distinct advantage over other protein scaffolds with a single binding surface.  相似文献   
7.
8.
Increasing atmospheric CO2 concentration is regarded as an important factor facilitating plants invasions by stimulating invasive species growth. However, the physiological mechanisms by which invasive plants increase at the expense of existing native plants are poorly understood. Plant growth is always related to energy-use process including energy assimilation and expenditure, and thus examination of energetic properties could provide mechanistic insight into growth responses to increased CO2. The aims of this study were to examine the effect of rising CO2 on the growth and energetic properties of alien invasive species (Wedelia trilobata (L.) Hitchc.) and its native congener (Wedelia chinensis (Osbeck.) Merr.) in South China, and to determine if the specific energetic properties of invasive species at elevated CO2 favoring its growth. Elevated CO2 stimulated a greater increase in biomass production for invasive W. trilobata (58.9%) than for its indigenous congener (48.1%). Meanwhile, elevated CO2 altered the energetic properties differently upon species. For invasive W. trilobata, elevated CO2 significantly increased total energetic gain via photosynthetic activity (A total), but decreased energetic cost of biomass construction (CC), and thus enhanced photosynthetic energy-use efficiency (PEUE) by 85.3%. In contrast, the indigenous W. chinensis showed a slight increase in PEUE by 43.8%. Additionally, W. trilobata individuals grown in elevated CO2 increased energy allocation towards stems. Statistic analysis revealed significant associations between growth characteristics (relative growth rate and biomass) and energetic properties (CC and PEUE), suggesting the greater growth stimulation in invasive species could be partly explained by its specific energetic properties in elevated CO2 concentration. The invasive species showed a greater increase in energy-use efficiency under elevated CO2, which consequently facilitated its growth. It might be a physiological mechanism promoting success of invasion with ongoing increase in atmospheric CO2 concentration.  相似文献   
9.
Theaflavin, a major constituent of black tea, possesses biological functions such as the antioxidative, antiviral, and anti-inflammatory ones. The purpose of this study was to verify whether theaflavin reduces focal cerebral ischemia injury in a rat model of middle cerebral artery occlusion (MCAO). Male Sprague-Dawley rats were anesthetized and subjected to 2 hours of MCAO followed 24 hours reperfusion. Theaflavin administration (5, 10, and 20 mg/kg, i.v.) ameliorated infarct and edema volume. Theaflavin inhibited leukocyte infiltration and expression of ICAM-1, COX-2, and iNOS in injured brain. Phosphorylation of STAT-1, a protein which mediates intracellular signaling to the nucleus, was enhanced 2-fold over that of sham group and was inhibited by theaflavin. Our study demonstrated that theaflavin significantly protected neurons from cerebral ischemia-reperfusion injury by limiting leukocyte infiltration and expression of ICAM-1, and suppressing upregulation of inflammatory-related prooxidative enzymes (iNOS and COX-2) in ischemic brain via, at least in part, reducing the phosphorylation of STAT-1.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号