首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   478篇
  免费   135篇
  2018年   3篇
  2015年   6篇
  2014年   12篇
  2013年   11篇
  2012年   14篇
  2011年   16篇
  2010年   6篇
  2009年   16篇
  2008年   9篇
  2007年   21篇
  2006年   14篇
  2005年   20篇
  2004年   21篇
  2003年   16篇
  2002年   24篇
  2001年   21篇
  2000年   26篇
  1999年   17篇
  1998年   15篇
  1997年   8篇
  1996年   9篇
  1995年   16篇
  1994年   8篇
  1993年   9篇
  1992年   30篇
  1991年   21篇
  1990年   21篇
  1989年   18篇
  1988年   17篇
  1987年   15篇
  1986年   15篇
  1985年   6篇
  1984年   16篇
  1983年   10篇
  1982年   7篇
  1981年   5篇
  1980年   4篇
  1979年   12篇
  1978年   8篇
  1977年   12篇
  1976年   8篇
  1975年   6篇
  1974年   7篇
  1973年   4篇
  1972年   3篇
  1970年   4篇
  1968年   5篇
  1967年   3篇
  1966年   3篇
  1965年   3篇
排序方式: 共有613条查询结果,搜索用时 62 毫秒
1.
2.
3.
We have studied the posttranslational modifications of the 52-kD protein, an estrogen-regulated autocrine mitogen secreted by several human breast cancer cells in culture (Westley, B., and H. Rochefort, 1980, Cell, 20:353-362). The secreted 52-kD protein was found to be phosphorylated mostly (94%) on high-mannose N-linked oligosaccharide chains, and mannose-6-phosphate signals were identified. The phosphate signal was totally removed by alkaline phosphatase hydrolysis. The secreted 52-kD protein was partly taken up by MCF7 cells via mannose-6-phosphate receptors and processed into 48- and 34-kD protein moieties as with lysosomal hydrolases. By electron microscopy, immunoperoxidase staining revealed most of the reactive proteins in lysosomes. After complete purification by immunoaffinity chromatography, we identified both the secreted 52-kD protein and its processed cellular forms as aspartic and acidic proteinases specifically inhibited by pepstatin. The 52-kD protease is secreted in breast cancer cells under its inactive proenzyme form, which can be autoactivated at acidic pH with a slight decrease of molecular mass. The enzyme of breast cancer cells, when compared with cathepsin D(s) of normal tissue, was found to be similar in molecular weight, enzymatic activities (inhibitors, substrates, specific activities), and immunoreactivity. However, the 52-kD protein and its cellular processed forms of breast cancer cells were totally sensitive to endo-beta-N-acetylglucosaminidase H (Endo H), whereas several cellular cathepsin D(s) of normal tissue were partially Endo H-resistant. This difference, in addition to others concerning tissue distribution, mitogenic activity and hormonal regulation, strongly suggests that the 52-kD cathepsin D-like enzyme of breast cancer cells is different from previously described cathepsin D(s). The 52-kD estrogen-induced lysosomal proteinase may have important functions in facilitating the mammary cancer cells to proliferate, migrate, and metastasize.  相似文献   
4.
In an attempt to understand the mechanism by which estrogens stimulate cell proliferation and mammary carcinogenesis, metastatic human breast cancer cell lines (MCF7, ZR75-1) were found to secrete a 52,000 dalton (52K) protein under estrogen stimulation. Following its purification to homogeneity, the 52K protein was identified as a secreted procathepsin-D-like aspartyl protease bearing mannose-6-phosphate signals. This precursor displays an in vitro autocrine mitogenic activity on estrogen-deprived MCF7 cells and is able to degrade basement membrane and proteoglycans following its autoactivation. The total protease (52K + 48K and 34K) was detected and assayed by monoclonal antibodies and was found to be highly concentrated in proliferative and cystic mastopathies. In breast cancer, its cytosolic concentration appears to be correlated more to tumor invasiveness than to hormone responsiveness. The mRNA of the 52K protease accumulates rapidly following estradiol treatment, as was shown by Northern blot analysis with cloned cDNA. The 52K cathepsin-D-like protease is the first example of a lysosomal protease induced by estrogens in cancer cells. Results obtained using different approaches suggest that two cysteinyl cathepsins are also related to cell transformation and invasiveness. It has been proposed that cathepsin-B is involved in breast cancer and metastatic melanoma, and its regulation by estrogen has been shown in the rat uterus. Cathepsin-L corresponds to the major excreted protein (MEP) whose synthesis and secretion are markedly increased by transformation of NIH 3T3 cells with Ki ras and are regulated by several growth factors. In addition to secreted autocrine growth factors and to other proteases (plasminogen activator, collagenase), lysosomal cathepsins may therefore play an important role in the process of tumor growth and invasion as long as their precursor is secreted abundantly.  相似文献   
5.
Structure of the human oestrogen-responsive gene pS2.   总被引:13,自引:1,他引:12       下载免费PDF全文
  相似文献   
6.
Sequence of the chicken ovotransferrin gene.   总被引:2,自引:1,他引:1       下载免费PDF全文
  相似文献   
7.
We demonstrate here that the human oestrogen receptor (hER) cDNA clone pOR8 obtained from MCF-7 cells contains an artefactual point mutation which results in the substitution of a valine for a glycine at amino acid position 400 (Gly-400----Val-400). This mutation in the hormone binding domain of the cloned hER destabilizes its structure and decreases its apparent affinity for oestradiol at 25 degrees C, but not at 4 degrees C, when compared with the wild-type hER with a Gly-400.  相似文献   
8.
We have characterized the complexes resulting from the specific binding in vitro of proteins present in nuclear extracts of several lymphoid and non-lymphoid cell lines to the TC-I and TC-II sequences of the simian virus 40 (SV40) enhancer. No proteins could be detected, binding selectively to the TC-I sequence, but two proteins TC-IIA and TC-IIB were identified interacting specifically with both the TC-II/kappa B enhanson, 5'-GGAAAGTCCCC-3' (important for the activity of the SV40 enhancer in vivo), and with the related H-2Kb enhanson, 5'-TGGGGATTCCCCA-3'. The binding of these two proteins to mutated TC-II enhansons correlates with the effect of these mutations in vivo, suggesting that both proteins may be important for SV40 enhancer activity. The TC-IIA binding activity was present in nuclear extracts of mature lymphoid B cells and was increased in pre-B cell nuclear extracts by lipopolysaccharide (LPS) and cycloheximide treatment. Furthermore, complex formation between the TC-IIA protein and the TC-II enhanson was efficiently competed by the kappa B motif from the kappa chain enhancer, indicating that TC-IIA is the NF-kappa B factor or a closely related protein. However, in contrast to previous reports, a TC-IIA/NF-kappa B-like protein whose properties could not be distinguished from those of the TC-IIA protein present in lymphoid B cells, was found in nuclear extracts of several untreated non-lymphoid cell lines, notably of HeLa cells, but not of undifferentiated F9 embryonal carcinoma (EC) cells [F9(ND)]. The TC-IIA binding activity which was moderately increased in HeLa cell nuclear extracts by 12-O-tetradecanoylphorbol-13-acetate (TPA) and/or cycloheximide treatment could be induced in nuclear extracts of F9(ND) cells by cycloheximide, but not by TPA. Moreover, the TC-IIA binding activity could be induced in cytosolic fractions from F9(ND) cells by treatment with deoxycholate, indicating that these cells contain an inhibitor protein similar to the previously described NF-kappa B inhibitor, I kappa B. The second TC-II enhanson binding protein, TC-IIB, which could be clearly distinguished from the TC-IIA/NF-kappa B-like protein, by a number of differential properties, resembles the previously described KBF1/H2TF1 protein as it binds with a higher affinity to the H-2Kb enhanson than to the TC-II/kappa B enhanson, and its pattern of methylation interference on the H-2Kb and TC-II/kappa B enhansons is identical to that reported for the KBF1/H2TF1 protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
9.
10.
I Davidson  J H Xiao  R Rosales  A Staub  P Chambon 《Cell》1988,54(7):931-942
We have purified a protein (TEF-1) that specifically binds to two sequence unrelated motifs (GT-IIC and Sph) of the simian virus 40 (SV40) enhancer. TEF-1 binds cooperatively to templates containing tandem but not inverted or spaced repeats of its cognate motifs. This cooperative binding correlates with the ability of the tandem repeats to generate enhancer activity in vivo. In contrast, TEF-1 and a second SV40 enhancer binding protein, TEF-2, bind independently to templates containing the cognate motifs of both proteins (GT-I and either GT-IIC or Sph motifs) even though these motifs cooperate in enhancer activity in vivo. These results allow us to distinguish different classes of enhancer factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号