首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   8篇
  2018年   1篇
  2012年   1篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1988年   2篇
  1987年   2篇
  1984年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
2.
Vascular endothelial cell adhesion molecule 1 (VCAM-1) is an adherence molecule that is induced on endothelial cells by cytokine stimulation and can mediate binding of lymphocytes or tumor cells to endothelium. Because these interactions often occur at the level of the microvasculature, we have examined the regulation of expression of VCAM-1 in human dermal microvascular endothelial cells (HDMEC) and compared it to the regulation of VCAM-1 in large vessel human umbilical vein endothelial cells (HUVEC). Both cell populations were judged pure as assessed by expression of von Willebrand factor and uptake of acetylated low density lipoprotein. Expression of VCAM-1 was not detectable on either unstimulated HDMEC or HUVEC when assessed by ELISA or flow cytometry. Stimulation of either HDMEC or HUVEC with TNF-alpha resulted in a time- and dose-dependent induction of VCAM-1. However, although TNF-alpha-induced cell surface and mRNA expression of VCAM-1 in HDMEC was transient, peaking after 16 h of stimulation, TNF stimulation led to persistently elevated cell surface expression of VCAM-1 on HUVEC. IL-1 alpha also induced cell surface expression of VCAM-1 on HUVEC in a time- and dose-dependent manner, but stimulation of HDMEC with IL-1 alpha at doses up to 1000 U/ml failed to induce significant cell surface expression. However, IL-1 alpha induced time- and dose-dependent increases in ICAM-1 on HDMEC. Similarly, IL-4 induced VCAM-1 expression and augmented TNF-alpha-induced expression on HUVEC but did not affect VCAM-1 expression on HDMEC. Binding of Ramos cells to cytokine-stimulated endothelial cell monolayers correlated with VCAM-1 induction. Increased binding was seen after stimulation of HDMEC with TNF-alpha, which was blocked by anti-VCAM-1 mAb, but no increases in binding were noted after stimulation of HDMEC monolayers with IL-1 alpha. These data provide additional evidence for the existence of endothelial cell heterogeneity and differences in cell adhesion molecule regulation on endothelial cells derived from different vascular beds.  相似文献   
3.
A human oral tumour progression model was established that consists of normal epithelial cells and three cell lines representing stages from dysplastic to metastatic cells. To investigate the impact of exogenous transforming growth factor-beta 1 on this model system, we analysed the responsiveness of those cells to transforming growth factor-beta 1 and explored the potential mechanism underlying the transforming growth factor-beta 1 activity. We found that the growth of all cell types, regardless of their stage of tumour progression, is inhibited by transforming growth factor-beta 1, although to different degrees. Transforming growth factor-beta 1 induced the expression of cyclin-dependent kinase inhibitors p15(INK4B), p21WAF1/(CIP1) and p27(KIP1). In contrast, transforming growth factor-beta 1 was found to stimulate the invasive potential of one cell type that represents the most advanced stage of tumour phenotype, suggesting that the impact of transforming growth factor-beta 1 on functional features of tumour cells other than cellular proliferation may play a significant role in the process of oral tumour progression.  相似文献   
4.
Pemphigus vulgaris (PV) is an autoimmune epidermal blistering disease caused by autoantibodies directed against the desmosomal cadherin desmoglein-3 (Dsg3). Significant advances in our understanding of pemphigus pathomechanisms have been derived from the generation of pathogenic monoclonal Dsg3 antibodies. However, conflicting models for pemphigus pathogenicity have arisen from studies using either polyclonal PV patient IgG or monoclonal Dsg3 antibodies. In the present study, the pathogenic mechanisms of polyclonal PV IgG and monoclonal Dsg3 antibodies were directly compared. Polyclonal PV IgG cause extensive clustering and endocytosis of keratinocyte cell surface Dsg3, whereas pathogenic mouse monoclonal antibodies compromise cell-cell adhesion strength without causing these alterations in Dsg3 trafficking. Furthermore, tyrosine kinase or p38 MAPK inhibition prevents loss of keratinocyte adhesion in response to polyclonal PV IgG. In contrast, disruption of adhesion by pathogenic monoclonal antibodies is not prevented by these inhibitors either in vitro or in human skin explants. Our results reveal that the pathogenic activity of polyclonal PV IgG can be attributed to p38 MAPK-dependent clustering and endocytosis of Dsg3, whereas pathogenic monoclonal Dsg3 antibodies can function independently of this pathway. These findings have important implications for understanding pemphigus pathophysiology, and for the design of pemphigus model systems and therapeutic interventions.  相似文献   
5.
The complexity and structural organization of defective-interfering (DI) particle DNA of equine herpesvirus type 1 (EHV-1) have been elucidated by using restriction enzyme and Southern blot hybridization analyses. DI particles were generated by serial high-multiplicity passage of EHV-1 in L-M cells, and total viral DNA was extracted from virus purified from supernatants of these serial passages. EHV-1 DI particle DNA was quantitatively separated from standard (STD) DNA by several cycles of CsCl isopycnic banding in a vertical rotor. Restriction endonuclease digestion profiles of pure DI DNA were completely different from the mapped patterns observed for EHV-1 STD DNA. Digestion of pure defective DNA with restriction enzymes (Bg/II, EcoRI, and XbaI), for which there are few or no cleavage sites within the S (short) region of the EHV-1 STD genome, yielded high-molecular-weight supermolar DNA bands, suggesting that a large subgenomic repeat unit was present in defective DNA. DNA blot hybridization analysis with the Bg/II supermolar fragment of defective DNA, intact DI particle genomic DNA, and EHV-1 STD DNA restriction enzyme fragments as 32P-labeled probes indicated that the EHV-1 DI particle genome originates predominately from the STD DNA S region (0.77 to 1.00 map units) and to a lesser extent from the left terminus of the unique long (UL) region (0.00 to 0.05 map units). None of the EHV-1 DNA sequences associated to date with EHV-1 oncogenesis (0.32 to 0.38 map units; O'Callaghan et al. in B. Roizman [ed.], Herpesviruses, in press; Robinson et al., Cell 32:204-219, 1983, and Proc. Natl. Acad. Sci., U.S.A., 78:6684-6688, 1981) were detected in the DI particle DNA. The importance of these data with regard to DNA replication of DI particles and the role of DI particles in one model system of EHV-1 oncogenic transformation are discussed.  相似文献   
6.
7.
There isincreasing evidence that sensory nerves may participate in cutaneousinflammatory responses by the release of neuropeptides such assubstance P (SP). We examined the direct effect of SP on human dermalmicrovascular endothelial cell (HDMEC) intercellular adhesion molecule1 (ICAM-1) expression and function. Our results indicated that,although cultured HDMEC expressed mRNA for neurokinin receptors 1, 2, and 3 (NK-1R, NK-2R, and NK-3R), SP initiated a rapid increase in HDMECintracellular Ca2+ levels,primarily by the activation of NK-1R. Immunohistochemistry studieslikewise demonstrated that HDMEC predominantly expressed NK-1R. Theaddition of SP to HDMEC resulted in a rapid increase in cellular ICAM-1mRNA levels, followed by a fivefold increase in ICAM-1 cell surfaceexpression. This functionally resulted in a threefold increase in51Cr-labeled binding of J-Ylymphoblastoid cells to HDMEC. In vivo studies demonstrated a markedincrease in microvascular ICAM-1 immunostaining 24 and 48 h afterapplication of capsaicin to the skin. These results indicate thatneuropeptides such as SP are capable of directly activating HDMEC toexpress increased levels of functional ICAM-1 and further support therole of the cutaneous neurological system in modulating inflammatoryprocesses in the skin.

  相似文献   
8.
The ability of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2, respectively) to repress host cell protein synthesis early in infection has been studied extensively and found to involve the activities of the UL41 gene product, the virion-associated host shutoff (vhs) protein. To date, UL41 homologs have been identified in the genomes of three other alphaherpesviruses: equine herpesvirus 1 (EHV-1), varicella-zoster virus, and pseudorabies virus, but very little is known about the putative products of these homologous genes. Our earlier observations that no rapid early host protein shutoff occurred in EHV-1-infected cells led us to test EHV-1 vhs activity more thoroughly and to examine the expression and function of the EHV-1 UL41 homolog, ORF19. In the present study, the effects of EHV-1 and HSV-1 infections on cellular protein synthesis and mRNA degradation were compared at various multiplicities of infection in several cell types under an actinomycin D block. No virion-associated inhibition of cellular protein synthesis or vhs-induced cellular mRNA degradation was detected in cells infected with any of three EHV-1 strains (Ab4, KyA, and KyD) at multiplicities of infection at which HSV-1 strain F exhibited maximal vhs activity. However, further analyses revealed that (i) the EHV-1 vhs homolog gene, ORF19, was transcribed and translated into a 58-kDa protein in infected cells; (ii) the ORF19 protein was packaged into viral particles in amounts detectable in Western blots (immunoblots) with monoclonal antibodies; (iii) in cotransfection vhs activity assays, transiently-expressed ORF19 protein had intrinsic vhs activity comparable to that of wild-type HSV-1 vhs; and (iv) this intrinsic vhs activity was ablated by in vitro site-directed mutations in which either the functionally inactive HSV-1 vhs1 UL41 mutation (Thr at position 214 replaced by Ile [Thr-214-->Ile]) was recreated within ORF19 or two conserved residues within the putative poly(A) binding region of the ORF19 sequence were altered (Tyr-190, 192-->Phe). From these results we conclude that EHV-1's low vhs activity in infected cells is not a reflection of the ORF19 protein's intrinsic vhs activity but may be due instead to the amount of ORF19 protein associated with viral particles or to modulation of ORF19 protein's intrinsic activity by another viral component(s).  相似文献   
9.
10.
Recent studies indicate that when epidermal Langerhans' cells (LC) are cultured for 2 to 3 days they, in comparison to freshly prepared LC, exhibit markedly enhanced ability to stimulate T cell proliferative responses in oxidative mitogenesis and in the mixed epidermal-leukocyte reaction. In this study, we determined whether cultured LC enhance antigen-specific T cell responses, and whether such enhanced stimulatory capacity correlates with the level of Ia antigen expressed on LC. We used C3H/He (Iak) epidermal cells as stimulators and, as responder cells, both the trinitrophenyl-specific clones D8 and SE4, which were assayed for [3H]dThd incorporation, and the pigeon cytochrome c specific hybridoma 2C2, which was assayed for interleukin 2 production. Cultured LC induced 10 to 100 times greater proliferation or interleukin 2 production by responder cells than did freshly prepared LC. The intensity of I-Ak and I-Ek, expressed on cultured LC as assessed by immunofluorescence and flow cytometry, was found to be 10 to 36 times greater on a per cell basis than that on freshly prepared LC. Depletion of LC from fresh epidermal cell suspensions by anti-Iak and complement or treatment with 50 mJ/cm2 medium range ultraviolet light or cycloheximide before culture abrogated both the increase in Ia expression and antigen-specific clonal proliferation. The results suggest that when LC are removed from their usual epidermal milieu, they express increased amounts of Ia and become more potent stimulators of T cell responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号