首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   508篇
  免费   39篇
  2023年   8篇
  2022年   2篇
  2021年   29篇
  2020年   13篇
  2019年   16篇
  2018年   11篇
  2017年   14篇
  2016年   25篇
  2015年   38篇
  2014年   34篇
  2013年   37篇
  2012年   62篇
  2011年   41篇
  2010年   33篇
  2009年   21篇
  2008年   29篇
  2007年   39篇
  2006年   18篇
  2005年   23篇
  2004年   18篇
  2003年   10篇
  2002年   9篇
  2001年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1988年   1篇
  1981年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有547条查询结果,搜索用时 15 毫秒
1.
Quantitative data on sieve tubes in foliar terminal veins (vein endings) were added to the meager published information from only five dicot species. Correlations with other minor vein configurations were also explored. Leaf samples from ten species of dicots (Oxalis nelsonii, O. pes-capri, O. rubra, O. stricta [Oxalidaceae], Caesalpinia pulcherrima. Glycine max, Trifolium repens [Leguminosae], Ampelamus albidus [Asclepidaceae], Eupatorium rugosum [Asteraceae], and Polygonum convolvulus [Polygonaceae]) were selected for two quantitative procedures: 1) a survey of the arrangement of terminal veins and distribution of sieve tubes in terminal veins in 100 areoles per species using stained leaf clearings; and 2) a search for correlations of sieve tube distribution with number and branching patterns of terminal veins, and with sizes of areoles using image analysis. Two Oxalis species (O. pes-capri and O. stricta) had the smallest areoles and virtually no sieve tubes in any terminal vein. Polygonum convolvulus, at the other extreme, had sieve tubes extending to the tips of most terminal veins. The other species had various intermediate sieve tube configurations. The data indicate that species with few or no sieve tubes associated with their terminal veins, regardless of the number of terminal veins per areole, have smaller areoles. These results may have implications regarding the entry of leaf photosynthates into the vascular system.  相似文献   
2.
The nucleolus is a common target of viruses and viral proteins, but for many viruses the functional outcomes and significance of this targeting remains unresolved. Recently, the first intranucleolar function of a protein of a cytoplasmically-replicating negative-sense RNA virus (NSV) was identified, with the finding that the matrix (M) protein of Hendra virus (HeV) (genus Henipavirus, family Paramyxoviridae) interacts with Treacle protein within nucleolar subcompartments and mimics a cellular mechanism of the nucleolar DNA-damage response (DDR) to suppress ribosomal RNA (rRNA) synthesis. Whether other viruses utilise this mechanism has not been examined. We report that sub-nucleolar Treacle targeting and modulation is conserved between M proteins of multiple Henipaviruses, including Nipah virus and other potentially zoonotic viruses. Furthermore, this function is also evident for P3 protein of rabies virus, the prototype virus of a different RNA virus family (Rhabdoviridae), with Treacle depletion in cells also found to impact virus production. These data indicate that unrelated proteins of viruses from different families have independently developed nucleolar/Treacle targeting function, but that modulation of Treacle has distinct effects on infection. Thus, subversion of Treacle may be an important process in infection by diverse NSVs, and so could provide novel targets for antiviral approaches with broad specificity.  相似文献   
3.
The cichlid fishes comprise the largest extant vertebrate family and are the quintessential example of rapid “explosive” adaptive radiations and phenotypic diversification. Despite low genetic divergence, East African cichlids harbor a spectacular intra- and interspecific morphological diversity, including the hyper-variable, neural crest (NC)-derived traits such as coloration and craniofacial skeleton. Although the genetic and developmental basis of these phenotypes has been investigated, understanding of when, and specifically how early, in ontogeny species-specific differences emerge, remains limited. Since adult traits often originate during embryonic development, the processes of embryogenesis could serve as a potential source of species-specific variation. Consequently, we designed a staging system by which we compare the features of embryogenesis between three Malawi cichlid species—Astatotilapia calliptera, Tropheops sp. ‘mauve’ and Rhamphochromis sp. “chilingali”—representing a wide spectrum of variation in pigmentation and craniofacial morphologies. Our results showed fundamental differences in multiple aspects of embryogenesis that could underlie interspecific divergence in adult adaptive traits. First, we identified variation in the somite number and signatures of temporal variation, or heterochrony, in the rates of somite formation. The heterochrony was also evident within and between species throughout ontogeny, up to the juvenile stages. Finally, the identified interspecific differences in the development of pigmentation and craniofacial cartilages, present at the earliest stages of their overt formation, provide compelling evidence that the species-specific trajectories begin divergence during early embryogenesis, potentially during somitogenesis and NC development. Altogether, our results expand our understanding of fundamental cichlid biology and provide new insights into the developmental origins of vertebrate morphological diversity.  相似文献   
4.
5.
Germ cells occupy a unique position in animal reproduction, development, and evolution. In sexually reproducing animals, only they can produce gametes and contribute genetically to subsequent generations. Nonetheless, germ line specification during embryogenesis is conceptually the same as the specification of any somatic cell type: germ cells must activate a specific gene regulatory network in order to differentiate and go through gametogenesis. While many genes with critical roles in the germ line have been characterized with respect to expression pattern and genetic interactions, it is the molecular interactions of the relevant gene products that are ultimately responsible for germ cell differentiation. This review summarizes the current state of knowledge on the molecular functions and biochemical connections between germ line gene products. We find that homologous genes often interact physically with the same conserved molecular partners across the metazoans. We also point out cases of nonhomologous genes from different species whose gene products play analogous biological roles in the germ line. We suggest a preliminary molecular definition of an ancestral “pluripotency module” that could have been modified during metazoan evolution to become specific to the germ line. Mol. Reprod. Dev. 77: 3–18, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
6.
Biological feedbacks generated through patterns of disturbance are vital for sustaining ecosystem states. Recent ocean warming and thermal anomalies have caused pantropical episodes of coral bleaching, which has led to widespread coral mortality and a range of subsequent effects on coral reef communities. Although the response of many reef‐associated fishes to major disturbance events on coral reefs is negative (e.g., reduced abundance and condition), parrotfishes show strong feedbacks after disturbance to living reef structure manifesting as increases in abundance. However, the mechanisms underlying this response are poorly understood. Using biochronological reconstructions of annual otolith (ear stone) growth from two ocean basins, we tested whether parrotfish growth was enhanced following bleaching‐related coral mortality, thus providing an organismal mechanism for demographic changes in populations. Both major feeding guilds of parrotfishes (scrapers and excavators) exhibited enhanced growth of individuals after bleaching that was decoupled from expected thermal performance, a pattern that was not evident in other reef fish taxa from the same environment. These results provide evidence for a more nuanced ecological feedback system—one where disturbance plays a key role in mediating parrotfish–benthos interactions. By influencing the biology of assemblages, disturbance can thereby stimulate change in parrotfish grazing intensity and ultimately reef geomorphology over time. This feedback cycle operated historically at within‐reef scales; however, our results demonstrate that the scale, magnitude, and severity of recent thermal events are entraining the biological responses of disparate communities to respond in synchrony. This may fundamentally alter feedbacks in the relationships between parrotfishes and reef systems.  相似文献   
7.
The house sparrow is an important model species for studying physiological, ecological and evolutionary processes in wild populations. Here, we present a medium density, genome wide linkage map for house sparrow (Passer domesticus) that has aided the assembly of the house sparrow reference genome, and that will provide an important resource for ongoing mapping of genes controlling important traits in the ecology and evolution of this species. Using a custom house sparrow 10 K iSelect Illumina SNP chip we have assigned 6,498 SNPs to 29 autosomal linkage groups, based on a mean of 430 informative meioses per SNP. The map was constructed by combining the information from linkage with that of the physical position of SNPs within scaffold sequences in an iterative process. Averaged between the sexes; the linkage map had a total length of 2,004 cM, with a longer map for females (2,240 cM) than males (1,801 cM). Additionally, recombination rates also varied along the chromosomes. Comparison of the linkage map to the reference genomes of zebra finch, collared flycatcher and chicken, showed a chromosome fusion of the two avian chromosomes 8 and 4A in house sparrow. Lastly, information from the linkage map was utilized to conduct analysis of linkage disequilibrium (LD) in eight populations with different effective population sizes (Ne) in order to quantify the background level LD. Together, these results aid the design of future association studies, facilitate the development of new genomic tools and support the body of research that describes the evolution of the avian genome.  相似文献   
8.
9.
10.
Neuronal extracellular vesicles (EVs) play important roles in intercellular communication and pathogenic protein propagation in neurological disease. However, it remains unclear how cargoes are selectively packaged into neuronal EVs. Here, we show that loss of the endosomal retromer complex leads to accumulation of EV cargoes including amyloid precursor protein (APP), synaptotagmin-4 (Syt4), and neuroglian (Nrg) at Drosophila motor neuron presynaptic terminals, resulting in increased release of these cargoes in EVs. By systematically exploring known retromer-dependent trafficking mechanisms, we show that EV regulation is separable from several previously identified roles of neuronal retromer. Conversely, mutations in rab11 and rab4, regulators of endosome-plasma membrane recycling, cause reduced EV cargo levels, and rab11 suppresses cargo accumulation in retromer mutants. Thus, EV traffic reflects a balance between Rab4/Rab11 recycling and retromer-dependent removal from EV precursor compartments. Our data shed light on previous studies implicating Rab11 and retromer in competing pathways in Alzheimer’s disease, and suggest that misregulated EV traffic may be an underlying defect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号