首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   3篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2008年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1972年   1篇
  1967年   1篇
  1966年   2篇
排序方式: 共有35条查询结果,搜索用时 112 毫秒
1.
Shiga toxins (Stx) play an important role in the pathogenesis of hemolytic uremic syndrome, a life-threatening renal sequela of human intestinal infection caused by specific Escherichia coli strains. Stx target a restricted subset of human endothelial cells that possess the globotriaosylceramide receptor, like that in renal glomeruli. The toxins, composed of five B chains and a single enzymatic A chain, by removing adenines from ribosomes and DNA, trigger apoptosis and the production of pro-inflammatory cytokines in target cells. Because bacteria are confined to the gut, the toxins move to the kidney through the circulation. Polymorphonuclear leukocytes (PMN) have been indicated as the carriers that "piggyback" shuttle toxins to the kidney. However, there is no consensus on this topic, because not all laboratories have been able to reproduce the Stx/PMN interaction. Here, we demonstrate that conformational changes of Shiga toxin 1, with reduction of α-helix content and exposition to solvent of hydrophobic tryptophan residues, cause a loss of PMN binding activity. The partially unfolded toxin was found to express both enzymatic and globotriaosylceramide binding activities being fully active in intoxicating human endothelial cells; this suggests the presence of a distinct PMN-binding domain. By reviewing functional and structural data, we suggest that A chain moieties close to Trp-203 are recognized by PMN. Our findings could help explain the conflicting results regarding Stx/PMN interactions, especially as the groups reporting positive results obtained Stx by single-step affinity chromatography, which could have preserved the correct folding of Stx with respect to more complicated multi-step purification methods.  相似文献   
2.
The inhibitory power of adenine and 4-aminopyrazolo[3,4-d]pyrimidine (4-APP) on the RNA-N-glycosidase activity catalyzed by bacterial (Shiga toxin 1) and plant (ricin, gelonin, momordin, bryodin-R, PAP-S, luffin, trichosantin, saporin 6 and barley) RIPs has been compared. The behavior of the two inhibitors is largely variable. While Shiga toxin 1 is preferentially inhibited by 4-APP, plant RIPs are either preferentially inhibited by adenine, or equally inhibited by the two compounds or, finally, only slightly more by 4-APP. Sequence variabilities involved in these different behaviors are discussed. The experimental data clearly indicate that, in spite of the same mechanism of action, RIPs differ widely in the ability to fit small ring molecules in the active cleft. While the strong inhibitory power of 4-APP on Shiga toxin 1 opens perspectives of therapeutic interventions, the ineffectiveness of the compound on ricin precludes its use as a suitable antidote in poisoning.  相似文献   
3.
The requirement of ATP and extra-ribosomal proteins for the inactivation of ribosomes by eight plant RNA N-glycosidases [ribosome-inactivating proteins (RIPs)] was investigated. Tritin, pokeweed antiviral protein and barley RIP depend, as gelonin [Sperti, S., Brigotti, M., Zamboni, M., Carnicelli, D. and Montanaro, L. (1991) Biochem. J., 277, 281-284], on the presence of ATP and extra-ribosomal proteins for full inactivation of ribosomes, while bryodin, lychnin, momordin, momorcochin and saporin inactivate isolated Artemia salina ribosomes suspended in buffer saline.  相似文献   
4.
Shiga toxin 1 (Stx1) catalyses the removal of a unique and specific adenine from 28S RNA in ribosomes (RNA-N-glycosidase activity) and the release of multiple adenines from DNA (DNA glycosylase activity). Added adenine behaves as an uncompetitive inhibitor of the RNA-N-glycosidase reaction binding more tightly to the Stx1–ribosome complex than to the free enzyme. Several purine derivatives and analogues have now been assayed as inhibitors of Stx1. Most of the compounds showed only minor differences in the rank order of activity on the two enzymatic reactions catalysed by Stx1. The survey highlights the importance of the amino group in the 6-position of the pyrimidine ring of adenine. Shifting (2-aminopurine) or substituting (hypoxanthine, 6-mercaptopurine, 6-methylpurine) the group greatly decreases the inhibitory power. The presence of a second ring, besides the pyrimidine one, is strictly required. Substitution, by introducing an additional nitrogen, of the imidazole ring of adenine with triazole leads to loss of inhibitory power, while rearrangement of the nitrogen atoms of the ring from the imidazole to the pyrazole configuration greatly enhances the inhibitory power. Thus 4-aminopyrazolo[3,4-d]pyrimidine (4-APP), the isomer of adenine with the five-membered ring in the pyrazole configuration, is by far the most potent inhibitor of both enzymatic reactions catalysed by Stx1. This finding opens perspectives on therapeutic strategies to protect endothelial renal cells once endocytosis of Stx1 has occurred (haemolytic uraemic syndrome). In the RNA-N-glycosidase reaction 4-APP binds, as adenine, predominantly to the Stx1–ribosome complex (uncompetitive inhibition), while inhibition of the DNA glycosylase activity by both inhibitors is of the mixed type.  相似文献   
5.
Ribosome-inactivating proteins (RIPs) similar to those already known (Stirpe & Barbieri (1986) FEBS Lett. 195, 1-8) were purified from the seeds of Asparagus officinalis (two proteins, asparin 1 and 2), of Citrullus colocynthis (two proteins, colocin 1 and 2), of Lychnis chalcedonica (lychnin) and of Manihot palmata (mapalmin), from the roots of Phytolacca americana (pokeweed antiviral protein from roots, PAP-R) and from the leaves of Bryonia dioica (bryodin-L). The two latter proteins can be considered as isoforms, respectively, of previously purified PAP, from the leaves of P. americana, and of bryodin-R, from the roots of B. dioica. All proteins have an Mr at approx, 30,000, and an alkaline isoelectric point. Bryodin-L, colocins, lychnin and mapalmin are glycoproteins. All RIPs inhibit protein synthesis by a rabbit reticulocyte lysate and phenylalanine polymerization by isolated ribosomes and alter rRNA in a similar manner as the A-chain of ricin and related toxins (Endo et al. (1987) J. Biol. Chem. 262, 5908-5912).  相似文献   
6.
Smooth muscle cells (SMC) from the circular muscle layer of rabbit colon, taken from the proximal and distal regions that are known to have different physiological and motor activities, were used to highlight distinct regional intrinsic myogenic properties and to investigate the correlations between receptor and signalling transduction pathways. Contractile agonists were shown to be more potent on proximal than on distal SMC in inducing contraction and intracellular Ca(2+) increase. Concentration-response curves of agonists-induced Ca(2+) increase were constantly shifted to the right, though remaining parallel, with respect to contraction curves, independently of the region analysed. Using agents activating different steps of cAMP-or cGMP-mediated intracellular cascades, main regional differences were revealed as far as relaxation was concerned. Relaxation of proximal SMC was found to be essentially cGMP mediated, while that of distal SMC was cAMP mediated. In conclusion, the motor patterns of the two regions appear to be influenced by distinct regional biochemical characteristics that are intrinsic to colonic SMC.  相似文献   
7.
The branched M33 antimicrobial peptide was previously shown to be very active against Gram-negative bacterial pathogens, including multidrug-resistant strains. In an attempt to produce back-up molecules, we synthesized an M33 peptide isomer consisting of D-aminoacids (M33-D). This isomeric version showed 4 to 16-fold higher activity against Gram-positive pathogens, including Staphylococcus aureus and Staphylococcus epidermidis, than the original peptide, while retaining strong activity against Gram-negative bacteria. The antimicrobial activity of both peptides was influenced by their differential sensitivity to bacterial proteases. The better activity shown by M33-D against S. aureus compared to M33-L was confirmed in biofilm eradication experiments where M33-L showed 12% activity with respect to M33-D, and in vivo models where Balb-c mice infected with S. aureus showed 100% and 0% survival when treated with M33-D and M33-L, respectively. M33-D appears to be an interesting candidate for the development of novel broad-spectrum antimicrobials active against bacterial pathogens of clinical importance.  相似文献   
8.
9.
Hemolytic uremic syndrome (eHUS) is a severe complication of human infections with Shiga toxins (Stxs)‐producing Escherichia coli. A key step in the pathogenesis of eHUS is the interaction of Stxs with blood components before the targeting of renal endothelial cells. Here, we show that a single proteolytic cleavage in the Stx2a A‐subunit, resulting into two fragments (A1 and A2) linked by a disulfide bridge (cleaved Stx2a), dictates different binding abilities. Uncleaved Stx2a was confirmed to bind to human neutrophils and to trigger leukocyte/platelet aggregate formation, whereas cleaved Stx2a was ineffective. Conversely, binding of complement factor H was confirmed for cleaved Stx2a and not for uncleaved Stx2a. It is worth noting that uncleaved and cleaved Stx2a showed no differences in cytotoxicity for Vero cells or Raji cells, structural conformation, and contaminating endotoxin. These results have been obtained by comparing two Stx2a batches, purified in different laboratories by using different protocols, termed Stx2a(cl; cleaved toxin, Innsbruck) and Stx2a(uncl; uncleaved toxin, Bologna). Stx2a(uncl) behaved as Stx2a(cl) after mild trypsin treatment. In this light, previous controversial results obtained with purified Stx2a has to be critically re‐evaluated; furthermore, characterisation of the structure of circulating Stx2a is mandatory to understand eHUS‐pathogenesis and to develop therapeutic approaches.  相似文献   
10.
Recent investigations have shown macromolecules, such as cutins, and suberins as effective markers for above and belowground plant tissues. These biopolyesters contain structural units specific for different litter components and for root biomass. The aim of this work was to understand the fate of plant organic matter (OM) in Mediterranean forest soils by evaluating the incorporation of cutin and suberin by measuring specific biomarkers. Soil and plant tissue (leaves, woods and roots) samples were collected in two mixed Mediterranean forests of Quercus ilex (holm oak) in costal stands in Tuscany (central Italy), which have different ecological and edaphic features. Ester-bound lipids of mineral and organic horizons and the overlying vegetation were analysed using the saponification method in order to depolymerise cutins and suberins and release their specific structural units. Cutin and suberin specific aliphatic monomers were identified and quantified by gas chromatographic techniques. The distribution of cutin and suberin specific monomers in plant tissue suggested that mid-chain hydroxy acids can be used as leaf-specific markers and α,ω-alkanedioic acids and ωC18:1 as root-specific markers. Differences in the distributions of biomarkers specific for above and belowground plant-derived OM was observed in the two types of soils, suggesting contrasted degradation, stabilisation and transport mechanisms that may be related to soil physico-chemical properties. The acidic and dry soil appeared to inhibit microbial activity, favouring stabilization of leaf-derived compounds, while, in the more fertile soil, protection within aggregates appeared to better preserve root-derived compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号