首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7506篇
  免费   628篇
  国内免费   2篇
  2023年   34篇
  2022年   36篇
  2021年   159篇
  2020年   120篇
  2019年   126篇
  2018年   154篇
  2017年   168篇
  2016年   238篇
  2015年   327篇
  2014年   372篇
  2013年   445篇
  2012年   589篇
  2011年   521篇
  2010年   328篇
  2009年   287篇
  2008年   395篇
  2007年   446篇
  2006年   361篇
  2005年   317篇
  2004年   299篇
  2003年   321篇
  2002年   269篇
  2001年   104篇
  2000年   82篇
  1999年   75篇
  1998年   87篇
  1997年   66篇
  1996年   63篇
  1995年   60篇
  1994年   59篇
  1993年   59篇
  1992年   72篇
  1991年   52篇
  1990年   67篇
  1989年   55篇
  1988年   64篇
  1987年   43篇
  1986年   43篇
  1985年   54篇
  1984年   58篇
  1983年   44篇
  1982年   28篇
  1981年   47篇
  1980年   34篇
  1979年   34篇
  1978年   32篇
  1977年   28篇
  1976年   27篇
  1975年   21篇
  1974年   38篇
排序方式: 共有8136条查询结果,搜索用时 882 毫秒
1.
Two unusual sequence organizations were found within the beta-globin locus of the cow. Each was a composite, consisting of closely linked Alu-type repeats with a short stretch of genomic non-repetitive sequence, called a lagan, sandwiched between. One lagan was found 3' to the fetal globin gene, while the second lay between the adult globin gene and a globin pseudogene. Southern blot analysis indicated that both lagans appeared twice within the cow haploid genome, with the second copies lying outside the cow beta-globin locus. One of these non-globin locus homologues was cloned and subjected to sequence analysis. Comparison of the DNA sequence data showed that the lagan-Alu composite was transposed as a unit. The lagan 3' to the cow fetal globin gene contains the recognition site for a sequence specific DNA binding factor. This factor was present in extracts from fetal, but not from adult cow tissues.  相似文献   
2.
3.
Small conductance Ca2+-sensitive potassium (SK2) channels are voltage-independent, Ca2+-activated ion channels that conduct potassium cations and thereby modulate the intrinsic excitability and synaptic transmission of neurons and sensory hair cells. In the cochlea, SK2 channels are functionally coupled to the highly Ca2+ permeant α9/10-nicotinic acetylcholine receptors (nAChRs) at olivocochlear postsynaptic sites. SK2 activation leads to outer hair cell hyperpolarization and frequency-selective suppression of afferent sound transmission. These inhibitory responses are essential for normal regulation of sound sensitivity, frequency selectivity, and suppression of background noise. However, little is known about the molecular interactions of these key functional channels. Here we show that SK2 channels co-precipitate with α9/10-nAChRs and with the actin-binding protein α-actinin-1. SK2 alternative splicing, resulting in a 3 amino acid insertion in the intracellular 3′ terminus, modulates these interactions. Further, relative abundance of the SK2 splice variants changes during developmental stages of synapse maturation in both the avian cochlea and the mammalian forebrain. Using heterologous cell expression to separately study the 2 distinct isoforms, we show that the variants differ in protein interactions and surface expression levels, and that Ca2+ and Ca2+-bound calmodulin differentially regulate their protein interactions. Our findings suggest that the SK2 isoforms may be distinctly modulated by activity-induced Ca2+ influx. Alternative splicing of SK2 may serve as a novel mechanism to differentially regulate the maturation and function of olivocochlear and neuronal synapses.  相似文献   
4.
5.

In this review, we address the regulatory and toxic role of ·NO along several pathways, from the gut to the brain. Initially, we address the role on ·NO in the regulation of mitochondrial respiration with emphasis on the possible contribution to Parkinson’s disease via mechanisms that involve its interaction with a major dopamine metabolite, DOPAC. In parallel with initial discoveries of the inhibition of mitochondrial respiration by ·NO, it became clear the potential for toxic ·NO-mediated mechanisms involving the production of more reactive species and the post-translational modification of mitochondrial proteins. Accordingly, we have proposed a novel mechanism potentially leading to dopaminergic cell death, providing evidence that NO synergistically interact with DOPAC in promoting cell death via mechanisms that involve GSH depletion. The modulatory role of NO will be then briefly discussed as a master regulator on brain energy metabolism. The energy metabolism in the brain is central to the understanding of brain function and disease. The core role of ·NO in the regulation of brain metabolism and vascular responses is further substantiated by discussing its role as a mediator of neurovascular coupling, the increase in local microvessels blood flow in response to spatially restricted increase of neuronal activity. The many facets of NO as intracellular and intercellular messenger, conveying information associated with its spatial and temporal concentration dynamics, involve not only the discussion of its reactions and potential targets on a defined biological environment but also the regulation of its synthesis by the family of nitric oxide synthases. More recently, a novel pathway, out of control of NOS, has been the subject of a great deal of controversy, the nitrate:nitrite:NO pathway, adding new perspectives to ·NO biology. Thus, finally, this novel pathway will be addressed in connection with nitrate consumption in the diet and the beneficial effects of protein nitration by reactive nitrogen species.

  相似文献   
6.
  1. The growing pace of environmental change has increased the need for large‐scale monitoring of biodiversity. Declining intraspecific genetic variation is likely a critical factor in biodiversity loss, but is especially difficult to monitor: assessments of genetic variation are commonly based on measuring allele pools, which requires sampling of individuals and extensive sample processing, limiting spatial coverage. Alternatively, imaging spectroscopy data from remote platforms may hold the potential to reveal genetic structure of populations. In this study, we investigated how differences detected in an airborne imaging spectroscopy time series correspond to genetic variation within a population of Fagus sylvatica under natural conditions.
  2. We used multi‐annual APEX (Airborne Prism Experiment) imaging spectrometer data from a temperate forest located in the Swiss midlands (Laegern, 47°28'N, 8°21'E), along with microsatellite data from F. sylvatica individuals collected at the site. We identified variation in foliar reflectance independent of annual and seasonal changes which we hypothesize is more likely to correspond to stable genetic differences. We established a direct connection between the spectroscopy and genetics data by using partial least squares (PLS) regression to predict the probability of belonging to a genetic cluster from spectral data.
  3. We achieved the best genetic structure prediction by using derivatives of reflectance and a subset of wavebands rather than full‐analyzed spectra. Our model indicates that spectral regions related to leaf water content, phenols, pigments, and wax composition contribute most to the ability of this approach to predict genetic structure of F. sylvatica population in natural conditions.
  4. This study advances the use of airborne imaging spectroscopy to assess tree genetic diversity at canopy level under natural conditions, which could overcome current spatiotemporal limitations on monitoring, understanding, and preventing genetic biodiversity loss imposed by requirements for extensive in situ sampling.
  相似文献   
7.
Paraquat (1,1'-dimethyl-4,4'-bipyridinium), a widely used non-selective herbicide, is a redox cycling agent with adverse effects on dopamine systems. Epidemiological data have shown that exposure to paraquat is one of the several risk factors for Parkinson's disease. We have already shown that cyclo(His-Pro), an endogenous cyclic dipeptide produced by the cleavage of the thyrotropin releasing hormone, has a cytoprotective effect through a mechanism involving Nrf2 activation that decreases production of reactive oxygen species and increases glutathione synthesis. Using primary neuronal cultures and PC12 cells as targets of paraquat neurotoxicity, we addressed whether and how cyclo(His-Pro) causes cellular protective response against paraquat-mediated cell death. We found that cyclo(His-Pro) attenuated reactive oxygen species production, and prevented glutathione depletion by up-regulating Nrf2 gene expression, triggering its nuclear accumulation and activating the expression of heme oxygenase1. These protective effects were abolished by RNA interference-mediated Nrf2 knock down whereas were unaffected by RNA interference-mediated Keap1 knock down. Inhibition of heme oxygenase activity decreased cyclo(His-Pro)-induced neuroprotection. These results suggest that cyclo(His-Pro), acting as a selective activator of the brain modulable Nrf2 pathway, may be a promising candidate as neuroprotective agent that act through induction of phase II genes.  相似文献   
8.
9.
Synthetic 125I-labelled N-(2-hydroxypropyl)methacrylamide copolymers containing four different, potentially degradable peptidyl side chains were incubated with rat visceral yolk sacs cultured in vitro. All copolymers were captured by fluid-phase pinocytosis and three of the side chains were susceptible to lysosomal hydrolysis, resulting in release of [125I]iodotyrosine back into the culture medium. Uptake and degradation was completely inhibited by 2,4-dinitrophenol. The thiol-proteinase inhibitor leupeptin did not affect the rate of pinocytosis, but caused different degrees of inhibition of hydrolysis depending on side chain composition.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号