首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7966篇
  免费   671篇
  国内免费   569篇
  2024年   3篇
  2023年   86篇
  2022年   122篇
  2021年   367篇
  2020年   306篇
  2019年   346篇
  2018年   370篇
  2017年   251篇
  2016年   356篇
  2015年   503篇
  2014年   571篇
  2013年   599篇
  2012年   759篇
  2011年   633篇
  2010年   384篇
  2009年   369篇
  2008年   408篇
  2007年   378篇
  2006年   346篇
  2005年   276篇
  2004年   237篇
  2003年   202篇
  2002年   172篇
  2001年   143篇
  2000年   114篇
  1999年   131篇
  1998年   76篇
  1997年   84篇
  1996年   73篇
  1995年   68篇
  1994年   78篇
  1993年   59篇
  1992年   69篇
  1991年   68篇
  1990年   55篇
  1989年   31篇
  1988年   32篇
  1987年   23篇
  1986年   20篇
  1985年   22篇
  1984年   6篇
  1983年   8篇
  1982年   1篇
  1978年   1篇
排序方式: 共有9206条查询结果,搜索用时 31 毫秒
1.
Metabolic homeostasis is critical for all biological processes in the brain. The metabolites are considered the best indicators of cell states and their rapid fluxes are extremely sensitive to cellular changes. While there are a few studies on the metabolomics of Parkinson’s disease, it lacks longitudinal studies of the brain metabolic pathways affected by aging and the disease. Using ultra-high performance liquid chromatography and tandem mass spectroscopy (UPLC/MS), we generated the metabolomics profiling data from the brains of young and aged male PD-related α-synuclein A53T transgenic mice as well as the age- and gender-matched non-transgenic (nTg) controls. Principal component and unsupervised hierarchical clustering analyses identified distinctive metabolites influenced by aging and the A53T mutation. The following metabolite set enrichment classification revealed the alanine metabolism, redox and acetyl-CoA biosynthesis pathways were substantially disturbed in the aged mouse brains regardless of the genotypes, suggesting that aging plays a more prominent role in the alterations of brain metabolism. Further examination showed that the interaction effect of aging and genotype only disturbed the guanosine levels. The young A53T mice exhibited lower levels of guanosine compared to the age-matched nTg controls. The guanosine levels remained constant between the young and aged nTg mice, whereas the aged A53T mice showed substantially increased guanosine levels compared to the young mutant ones. In light of the neuroprotective function of guanosine, our findings suggest that the increase of guanosine metabolism in aged A53T mice likely represents a protective mechanism against neurodegeneration, while monitoring guanosine levels could be applicable to the early diagnosis of the disease.  相似文献   
2.
3.
Although several Cre-loxP-based gene knockout mouse models have been generated for the study of gene function in alveolar epithelia in the lung, their applications are still limited. In this study, we developed a SPC-Cre-ERT2 mouse model, in which a tamoxifen-inducible Cre recombinase (Cre-ERT2) is under the control of the human surfactant protein C (SPC) promoter. The specificity and efficiency of Cre-ERT2 activity was first evaluated by crossing SPC-Cre-ERT2 mouse with ROSA26R mouse, a β-galactosidase reporter strain. We found that Cre-ERT2 was expressed in 30.7% type II alveolar epithelial cells of SPC-Cre-ERT2/ROSA26R mouse lung tissues in the presence of tamoxifen. We then tested the tamoxifen-inducible recombinase activity of Cre-ERT2 in a mouse strain bearing TSC1 conditional knockout alleles (TSC1fx/fx). TSC1 deletion was detected in the lungs of tamoxifen treated SPC-Cre-ERT2/TSC1fx/fx mice. Therefore this SPC-Cre-ERT2 mouse model may be a valuable tool to investigate functions of genes in lung development, physiology and disease.  相似文献   
4.
5.
Gastric cancer is a major cause of mortality worldwide. The glutamate/aspartate transporter SLC1A3 has been implicated in tumour metabolism and progression, but the roles of SLC1A3 in gastric cancer remain unclear. We used bioinformatics approaches to analyse the expression of SLC1A3 and its role in gastric cancer. The expression levels of SLC1A3 were examined using RT‐qPCR and Western bolting. SLC1A3 overexpressing and knock‐down cell lines were constructed, and the cell viability was evaluated. Glucose consumption, lactate excretion and ATP levels were determined. The roles of SLC1A3 in tumour growth were evaluated using a xenograft tumour growth model. SLC1A3 was found to be overexpressed in gastric cancer, and this overexpression was associated with poor prognosis. In vitro and in vivo assays showed that SLC1A3 affected glucose metabolism and promoted gastric cancer growth. GSEA analysis suggested that SLC1A3 was positively associated with the up‐regulation of the PI3K/AKT pathway. SLC1A3 overexpression activated the PI3K/AKT pathway and up‐regulated GLUT1, HK II and LDHA expression. The PI3K/AKT inhibitor LY294002 prevented SLC1A3‐induced glucose metabolism and cell proliferation. Our findings indicate that SLC1A3 promotes gastric cancer progression via the PI3K/AKT signalling pathway. SLC1A3 is therefore a potential therapeutic target in gastric cancer.  相似文献   
6.
7.
8.
Immunotoxins with selective cytotoxicity are frequently used as therapeutic immunosuppressive agents in solid-organ transplantation because of their efficiency and high specificity. In this study, we present a new recombinant immunotoxin termed anti-CTLA-4-scFv–melittin prepared from Escherichia coli aimed at clearing activated T cells at the same time avoiding all-round decline in systematic immunity. This fusion protein is composed of anti-CTLA-4-scFv unit and melittin analog unit with properties of low immunogenicity and selective cytotoxicity to CTLA-4-positive T cells. In preliminary biological activity assays, our results confirmed the feasibility of activated T cell clearance strategy and there were significant differences in cell survival rates between CTLA-4-positive group and control group at all experimental concentrations of the immunotoxin. The selective cytotoxicity, low immunogenicity, and low production cost make it an attractive alternate to traditional immunosuppressants.  相似文献   
9.
Reversing the highly immunosuppressive tumor microenvironment (TME) is essential to achieve long-term efficacy with cancer immunotherapy. Despite the impressive clinical response to checkpoint blockade in multiple types of cancer, only a minority of patients benefit from this approach. Here, we report that the oncolytic virus M1 induces immunogenic tumor cell death and subsequently restores the ability of dendritic cells to prime antitumor T cells. Intravenous injection of M1 disrupts immune tolerance in the privileged TME, reprogramming immune-silent (cold) tumors into immune-inflamed (hot) tumors. M1 elicits potent CD8+ T cell-dependent therapeutic effects and establishes long-term antitumor immune memory in poorly immunogenic tumor models. Pretreatment with M1 sensitizes refractory tumors to subsequent checkpoint blockade by boosting T-cell recruitment and upregulating the expression of PD-L1. These findings reveal the antitumor immunological mechanism of the M1 virus and indicated that oncolytic viruses are ideal cotreatments for checkpoint blockade immunotherapy.Subject terms: Cancer microenvironment, Targeted therapies  相似文献   
10.
Wang  Ji-Hua  Cai  Yan-Fei  Li  Shi-Feng  Zhang  Shi-Bao 《Plant Ecology》2020,221(5):407-420
Plant Ecology - Leaves under high light may suffer from risks caused by excessive light energy and dehydration. However, it remains unclear how leaf water-related traits affect the photosynthetic...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号