首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   6篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2016年   4篇
  2015年   7篇
  2014年   2篇
  2013年   9篇
  2012年   6篇
  2011年   3篇
  2010年   4篇
  2009年   3篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1975年   2篇
排序方式: 共有67条查询结果,搜索用时 15 毫秒
1.
2.
Environmental (e)DNA, as a general approach in aquatic systems, seeks to connect the presence of species' genetic material in the water and hence to infer the species' physical presence. However, fisheries managers face making decisions with risk and uncertainty when eDNA indicates a fish is present but traditional methods fail to capture the fish. In comparison with traditional methods such as nets, electrofishing and piscicides, eDNA approaches have more sources of underlying error that could give rise to false positives. This has resulted in some managers to question whether eDNA can be used to make management decisions because there is no fish in hand. As a relatively new approach, the methods and techniques have quickly evolved to improve confidence in eDNA. By evaluating an eDNA based research programmes through the pattern of the eDNA signal, assay design, experimental design, quality assurance and quality control checks, data analyses and concurrent search for fish using traditional gears, the evidence for fish presence can be evaluated to build confidence in the eDNA approach. The benefits for fisheries management from adopting an eDNA approach are numerous but include cost effectiveness, broader geographic coverage of habitat occupancy, early detection of invasive species, non-lethal stock assessments, exploration of previously inaccessible aquatic environments and discovery of new species hidden beneath the water's surface. At a time when global freshwater and marine fisheries are facing growing threats from over-harvest, pollution and climate change, we anticipate that growing confidence in eDNA will overcome the inherent uncertainty of not having a fish in hand and will empower the informed management actions necessary to protect and restore our fisheries.  相似文献   
3.
At Palmyra Atoll, the environmental DNA (eDNA) signal on tidal sand flats was associated with fish biomass density and captured 98%–100% of the expected species diversity there. Although eDNA spilled over across habitats, species associated with reef habitat contributed more eDNA to reef sites than to sand-flat sites, and species associated with sand-flat habitat contributed more eDNA to sand-flat sites than to reef sites. Tides did not disrupt the sand-flat habitat signal. At least 25 samples give a coverage >97.5% at this diverse, tropical, marine system.  相似文献   
4.
Maintenance of a high degree of biodiversity in homogeneous environments is poorly understood. A complex cheese starter culture with a long history of use was characterized as a model system to study simple microbial communities. Eight distinct genetic lineages were identified, encompassing two species: Lactococcus lactis and Leuconostoc mesenteroides. The genetic lineages were found to be collections of strains with variable plasmid content and phage sensitivities. Kill-the-winner hypothesis explaining the suppression of the fittest strains by density-dependent phage predation was operational at the strain level. This prevents the eradication of entire genetic lineages from the community during propagation regimes (back-slopping), stabilizing the genetic heterogeneity in the starter culture against environmental uncertainty.  相似文献   
5.
Exogenous brain-derived neurotrophic factor (BDNF) enhances Ca2 + signaling and cell proliferation in human airway smooth muscle (ASM), especially with inflammation. Human ASM also expresses BDNF, raising the potential for autocrine/paracrine effects. The mechanisms by which ASM BDNF secretion occurs are not known. Transient receptor potential channels (TRPCs) regulate a variety of intracellular processes including store-operated Ca2 + entry (SOCE; including in ASM) and secretion of factors such as cytokines. In human ASM, we tested the hypothesis that TRPC3 regulates BDNF secretion. At baseline, intracellular BDNF was present, and BDNF secretion was detectable by enzyme linked immunosorbent assay (ELISA) of cell supernatants or by real-time fluorescence imaging of cells transfected with GFP–BDNF vector. Exposure to the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) (20 ng/ml, 48 h) or a mixture of allergens (ovalbumin, house dust mite, Alternaria, and Aspergillus extracts) significantly enhanced BDNF secretion and increased TRPC3 expression. TRPC3 knockdown (siRNA or inhibitor Pyr3; 10 μM) blunted BDNF secretion, and prevented inflammation effects. Chelation of extracellular Ca2 + (EGTA; 1 mM) or intracellular Ca2 + (BAPTA; 5 μM) significantly reduced secreted BDNF, as did the knockdown of SOCE proteins STIM1 and Orai1 or plasma membrane caveolin-1. Functionally, secreted BDNF had autocrine effects suggested by phosphorylation of high-affinity tropomyosin-related kinase TrkB receptor, prevented by chelating extracellular BDNF with chimeric TrkB-Fc. These data emphasize the role of TRPC3 and Ca2 + influx in the regulation of BDNF secretion by human ASM and the enhancing effects of inflammation. Given the BDNF effects on Ca2 + and cell proliferation, BDNF secretion may contribute to altered airway structure and function in diseases such as asthma.  相似文献   
6.
Several models of activation mechanisms were proposed for G protein-coupled receptors (GPCRs), yet no direct methods exist for their elucidation. The availability of constitutively active mutants has given an opportunity to study active receptor conformations within acceptable limits using models such as the angiotensin II type 1 (AT1)1 receptor mutant N111G-hAT1 which displays an important constitutive activity. Recently, by using methionine proximity assay, we showed for the hAT1 receptor that TMD III, VI, and VII form the ligand-binding pocket of the C-terminal amino acid of an antagonistic AngII analogue. In the present contribution, we investigated whether the same residues would also constitute the ligand-binding contacts in constitutively activated mutant (CAM) receptors. For this purpose, the same Met mutagenesis strategy was carried out on the N111G double mutants. Analysis of 43 receptors mutants in the N111G-hAT1 series, photolabeled and CNBr digested, showed that there were only subtle structural changes between the wt-receptor and its constitutively active form.  相似文献   
7.
8.
Freshwater fauna are particularly sensitive to environmental change and disturbance. Management agencies frequently use fish and amphibian biodiversity as indicators of ecosystem health and a way to prioritize and assess management strategies. Traditional aquatic bioassessment that relies on capture of organisms via nets, traps and electrofishing gear typically has low detection probabilities for rare species and can injure individuals of protected species. Our objective was to determine whether environmental DNA (eDNA) sampling and metabarcoding analysis can be used to accurately measure species diversity in aquatic assemblages with differing structures. We manipulated the density and relative abundance of eight fish and one amphibian species in replicated 206‐L mesocosms. Environmental DNA was filtered from water samples, and six mitochondrial gene fragments were Illumina‐sequenced to measure species diversity in each mesocosm. Metabarcoding detected all nine species in all treatment replicates. Additionally, we found a modest, but positive relationship between species abundance and sequencing read abundance. Our results illustrate the potential for eDNA sampling and metabarcoding approaches to improve quantification of aquatic species diversity in natural environments and point the way towards using eDNA metabarcoding as an index of macrofaunal species abundance.  相似文献   
9.
Estimating species richness using environmental DNA   总被引:1,自引:0,他引:1       下载免费PDF全文
The foundation for any ecological study and for the effective management of biodiversity in natural systems requires knowing what species are present in an ecosystem. We assessed fish communities in a stream using two methods, depletion‐based electrofishing and environmental DNA metabarcoding (eDNA) from water samples, to test the hypothesis that eDNA provides an alternative means of determining species richness and species identities for a natural ecosystem. In a northern Indiana stream, electrofishing yielded a direct estimate of 12 species and a mean estimated richness (Chao II estimator) of 16.6 species with a 95% confidence interval from 12.8 to 42.2. eDNA sampling detected an additional four species, congruent with the mean Chao II estimate from electrofishing. This increased detection rate for fish species between methods suggests that eDNA sampling can enhance estimation of fish fauna in flowing waters while having minimal sampling impacts on fish and their habitat. Modern genetic approaches therefore have the potential to transform our ability to build a more complete list of species for ecological investigations and inform management of aquatic ecosystems.  相似文献   
10.
The process of nonindigenous species (NIS) arrival has received limited theoretical consideration despite importance in predicting and preventing the establishment of NIS. We formulate a mechanistically based hierarchical model of NIS arrival and demonstrate simplifications leading to a marginal distribution of the number of surviving introduced individuals from parameters of survival probability and propagule pressure. The marginal distribution is extended as a stochastic process from which establishment emerges with a waiting time distribution. This provides a probability of NIS establishment within a specified period and may be useful for identifying patterns of successful invaders. However, estimates of both the propagule pressure and the individual survival probability are rarely available for NIS, making estimates of the probability of establishment difficult. Alternatively, researchers are able to measure proportional estimates of propagule pressure through models of NIS transport, such as gravity models, or of survival probability through habitat-matching indexes measuring the similarity between potentially occupied and native NIS ranges. Therefore, we formulate the relative waiting time between two locations and the probability of one location being invaded before the other.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号