首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   775684篇
  免费   95371篇
  国内免费   449篇
  2018年   6680篇
  2016年   9181篇
  2015年   13337篇
  2014年   15210篇
  2013年   21792篇
  2012年   24632篇
  2011年   25038篇
  2010年   16721篇
  2009年   15453篇
  2008年   21994篇
  2007年   22775篇
  2006年   20898篇
  2005年   20385篇
  2004年   19737篇
  2003年   19228篇
  2002年   18419篇
  2001年   35471篇
  2000年   35787篇
  1999年   28355篇
  1998年   10130篇
  1997年   10712篇
  1996年   10252篇
  1995年   9727篇
  1994年   9707篇
  1993年   9679篇
  1992年   23662篇
  1991年   22862篇
  1990年   22107篇
  1989年   21848篇
  1988年   19823篇
  1987年   19145篇
  1986年   17741篇
  1985年   17651篇
  1984年   14881篇
  1983年   12887篇
  1982年   10079篇
  1981年   9052篇
  1980年   8553篇
  1979年   14152篇
  1978年   11159篇
  1977年   10235篇
  1976年   9606篇
  1975年   10378篇
  1974年   10969篇
  1973年   10832篇
  1972年   9760篇
  1971年   9045篇
  1970年   7518篇
  1969年   7302篇
  1968年   6522篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Characteristics of morphology and number of melanomacrophage centers (MMCs) in the liver and spleen of the roach Rutilus rutilus and the amount of pigments in MMCs during the Haff disease outbreak and the death of fish in Lake Kotokel in relation to these parameters in the roach from Lake Baikal are described. Pathological changes in the microvasculature and parenchyma in the liver of the roach from Lake Kotokel were found. The area of melanomacrophage centers in the liver of the roach from this lake was significantly smaller, whereas the number and size of these centers in the spleen was significantly larger than in the roaches from Lake Baikal. Among the pigments studied, the strongest response to the content of this toxin in the water body was shown by hemosiderin. An increase in its amount in the spleen MMCs testifies to an enhanced degradation of erythrocytes and iron release, which may be caused by the damage of cells of the erythrocyte lineage by the toxin.  相似文献   
2.
Developmental axon branching dramatically increases synaptic capacity and neuronal surface area. Netrin-1 promotes branching and synaptogenesis, but the mechanism by which Netrin-1 stimulates plasma membrane expansion is unknown. We demonstrate that SNARE-mediated exocytosis is a prerequisite for axon branching and identify the E3 ubiquitin ligase TRIM9 as a critical catalytic link between Netrin-1 and exocytic SNARE machinery in murine cortical neurons. TRIM9 ligase activity promotes SNARE-mediated vesicle fusion and axon branching in a Netrin-dependent manner. We identified a direct interaction between TRIM9 and the Netrin-1 receptor DCC as well as a Netrin-1–sensitive interaction between TRIM9 and the SNARE component SNAP25. The interaction with SNAP25 negatively regulates SNARE-mediated exocytosis and axon branching in the absence of Netrin-1. Deletion of TRIM9 elevated exocytosis in vitro and increased axon branching in vitro and in vivo. Our data provide a novel model for the spatial regulation of axon branching by Netrin-1, in which localized plasma membrane expansion occurs via TRIM9-dependent regulation of SNARE-mediated vesicle fusion.  相似文献   
3.
4.
5.
Myeloid-derived suppressor cells (MDSC) are immature myeloid cells with immunosuppressive function. Compared to the level in healthy controls (HC), no elevation of MDSC in chronic hepatitis C (cHEP-C) patients was found, and there was no difference in MDSC based on genotype or viral load (P > 0.25). Moreover, MDSC of cHEP-C patients inhibited CD8 T cell function as efficiently as MDSC of HC did. Since we detected neither quantitative nor qualitative differences in MDSC of cHEP-C patients relative to those of HC, we postulate that MDSC in peripheral blood are most likely not significant regarding immune dysfunction in cHEP-C.  相似文献   
6.
7.
Inflammation is a key instigator of the immune responses that drive atherosclerosis and allograft rejection. IL-1α, a powerful cytokine that activates both innate and adaptive immunity, induces vessel inflammation after release from necrotic vascular smooth muscle cells (VSMCs). Similarly, IL-1α released from endothelial cells (ECs) damaged during transplant drives allograft rejection. However, IL-1α requires cleavage for full cytokine activity, and what controls cleavage in necrotic ECs is currently unknown. We find that ECs have very low levels of IL-1α activity upon necrosis. However, TNFα or IL-1 induces significant levels of active IL-1α in EC necrotic lysates without alteration in protein levels. Increased activity requires cleavage of IL-1α by calpain to the more active mature form. Immunofluorescence and proximity ligation assays show that IL-1α associates with interleukin-1 receptor-2, and this association is decreased by TNFα or IL-1 and requires caspase activity. Thus, TNFα or IL-1 treatment of ECs leads to caspase proteolytic activity that cleaves interleukin-1 receptor-2, allowing IL-1α dissociation and subsequent processing by calpain. Importantly, ECs could be primed by IL-1α from adjacent damaged VSMCs, and necrotic ECs could activate neighboring normal ECs and VSMCs, causing them to release inflammatory cytokines and up-regulate adhesion molecules, thus amplifying inflammation. These data unravel the molecular mechanisms and interplay between damaged ECs and VSMCs that lead to activation of IL-1α and, thus, initiation of adaptive responses that cause graft rejection.  相似文献   
8.
The collagenous extracellular matrix (ECM) of skeletal muscle functions to transmit force, protect sensitive structures, and generate passive tension to resist stretch. The mechanical properties of the ECM change with age, atrophy, and neuromuscular pathologies, resulting in an increase in the relative amount of collagen and an increase in stiffness. Although numerous studies have focused on the effect of muscle fibrosis on passive muscle stiffness, few have examined how these structural changes may compromise contractile performance. Here we combine a mathematical model and experimental manipulations to examine how changes in the mechanical properties of the ECM constrain the ability of muscle fibers and fascicles to radially expand and how such a constraint may limit active muscle shortening. We model the mechanical interaction between a contracting muscle and the ECM using a constant volume, pressurized, fiber-wound cylinder. Our model shows that as the proportion of a muscle cross section made up of ECM increases, the muscle’s ability to expand radially is compromised, which in turn restricts muscle shortening. In our experiments, we use a physical constraint placed around the muscle to restrict radial expansion during a contraction. Our experimental results are consistent with model predictions and show that muscles restricted from radial expansion undergo less shortening and generate less mechanical work under identical loads and stimulation conditions. This work highlights the intimate mechanical interaction between contractile and connective tissue structures within skeletal muscle and shows how a deviation from a healthy, well-tuned relationship can compromise performance.  相似文献   
9.
More than 50 hereditary lysosomal storage disorders (LSDs) are currently described. Most of these disorders are due to a deficiency of certain hydrolases/glycosidases and subsequent accumulation of nonhydrolyzable carbohydrate-containing compounds in lysosomes. Such accumulation causing hypertrophy of the lysosomal compartment is a characteristic feature of affected cells in LSDs. The investigation of biochemical and cellular parameters is of particular interest for understanding “life” of lysosomes in the normal state and in LSDs. This review highlights the wide spectrum of biochemical and morphological changes during developing LSDs that are extremely critical for many metabolic processes inside the various cells and tissues of affected persons. The data presented will help establish new complex strategies for metabolic correction of LSDs.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号