首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1198140篇
  免费   123387篇
  国内免费   578篇
  2018年   12566篇
  2017年   11954篇
  2016年   18063篇
  2015年   25503篇
  2014年   28544篇
  2013年   38963篇
  2012年   42890篇
  2011年   41644篇
  2010年   28624篇
  2009年   26566篇
  2008年   35399篇
  2007年   36577篇
  2006年   34004篇
  2005年   37619篇
  2004年   36280篇
  2003年   33388篇
  2002年   30482篇
  2001年   48385篇
  2000年   47787篇
  1999年   38731篇
  1998年   14461篇
  1997年   14400篇
  1996年   13729篇
  1995年   13079篇
  1994年   12899篇
  1993年   12812篇
  1992年   32349篇
  1991年   31452篇
  1990年   30810篇
  1989年   30240篇
  1988年   27669篇
  1987年   26606篇
  1986年   24680篇
  1985年   24580篇
  1984年   20522篇
  1983年   17658篇
  1982年   13569篇
  1981年   12330篇
  1980年   11428篇
  1979年   19287篇
  1978年   15144篇
  1977年   13757篇
  1976年   13049篇
  1975年   14437篇
  1974年   15611篇
  1973年   15369篇
  1972年   14066篇
  1971年   12722篇
  1970年   10941篇
  1969年   10720篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
During epithelial cell polarization, Yurt (Yrt) is initially confined to the lateral membrane and supports the stability of this membrane domain by repressing the Crumbs-containing apical machinery. At late stages of embryogenesis, the apical recruitment of Yrt restricts the size of the apical membrane. However, the molecular basis sustaining the spatiotemporal dynamics of Yrt remains undefined. In this paper, we report that atypical protein kinase C (aPKC) phosphorylates Yrt to prevent its premature apical localization. A nonphosphorylatable version of Yrt dominantly dismantles the apical domain, showing that its aPKC-mediated exclusion is crucial for epithelial cell polarity. In return, Yrt counteracts aPKC functions to prevent apicalization of the plasma membrane. The ability of Yrt to bind and restrain aPKC signaling is central for its role in polarity, as removal of the aPKC binding site neutralizes Yrt activity. Thus, Yrt and aPKC are involved in a reciprocal antagonistic regulatory loop that contributes to segregation of distinct and mutually exclusive membrane domains in epithelial cells.  相似文献   
2.
Developmental axon branching dramatically increases synaptic capacity and neuronal surface area. Netrin-1 promotes branching and synaptogenesis, but the mechanism by which Netrin-1 stimulates plasma membrane expansion is unknown. We demonstrate that SNARE-mediated exocytosis is a prerequisite for axon branching and identify the E3 ubiquitin ligase TRIM9 as a critical catalytic link between Netrin-1 and exocytic SNARE machinery in murine cortical neurons. TRIM9 ligase activity promotes SNARE-mediated vesicle fusion and axon branching in a Netrin-dependent manner. We identified a direct interaction between TRIM9 and the Netrin-1 receptor DCC as well as a Netrin-1–sensitive interaction between TRIM9 and the SNARE component SNAP25. The interaction with SNAP25 negatively regulates SNARE-mediated exocytosis and axon branching in the absence of Netrin-1. Deletion of TRIM9 elevated exocytosis in vitro and increased axon branching in vitro and in vivo. Our data provide a novel model for the spatial regulation of axon branching by Netrin-1, in which localized plasma membrane expansion occurs via TRIM9-dependent regulation of SNARE-mediated vesicle fusion.  相似文献   
3.
4.
5.
Myeloid-derived suppressor cells (MDSC) are immature myeloid cells with immunosuppressive function. Compared to the level in healthy controls (HC), no elevation of MDSC in chronic hepatitis C (cHEP-C) patients was found, and there was no difference in MDSC based on genotype or viral load (P > 0.25). Moreover, MDSC of cHEP-C patients inhibited CD8 T cell function as efficiently as MDSC of HC did. Since we detected neither quantitative nor qualitative differences in MDSC of cHEP-C patients relative to those of HC, we postulate that MDSC in peripheral blood are most likely not significant regarding immune dysfunction in cHEP-C.  相似文献   
6.
7.
An insufficiently known bivalve and gastropod assemblage from the Early-Middle Miocene (Tarkhanian-Chokrakian) of northern Sinop Province (Turkey), is analyzed. Environments of the assemblage are reconstructed for the Chokrakian as subtidal, with prevailing lime and sandy bottom and good aeration, and partially well vegetated. Impoverishment of the mollusk biocoenose in this part of the marine basin (only 18 bivalve and 22 gastropod species recorded) compared to other areas, including the closest regions, Bulgaria on the west and Georgia on the east, is emphasized. The relatively low diversity of the fauna is probably connected not only with insufficient collecting, but with special hydrological conditions. A special aspect of the fauna is highlighted by the presence of the bivalve Circomphalus foliaceolamellosus subplicatus (Orb.), which is rare in the Chokrakian.  相似文献   
8.
Inflammation is a key instigator of the immune responses that drive atherosclerosis and allograft rejection. IL-1α, a powerful cytokine that activates both innate and adaptive immunity, induces vessel inflammation after release from necrotic vascular smooth muscle cells (VSMCs). Similarly, IL-1α released from endothelial cells (ECs) damaged during transplant drives allograft rejection. However, IL-1α requires cleavage for full cytokine activity, and what controls cleavage in necrotic ECs is currently unknown. We find that ECs have very low levels of IL-1α activity upon necrosis. However, TNFα or IL-1 induces significant levels of active IL-1α in EC necrotic lysates without alteration in protein levels. Increased activity requires cleavage of IL-1α by calpain to the more active mature form. Immunofluorescence and proximity ligation assays show that IL-1α associates with interleukin-1 receptor-2, and this association is decreased by TNFα or IL-1 and requires caspase activity. Thus, TNFα or IL-1 treatment of ECs leads to caspase proteolytic activity that cleaves interleukin-1 receptor-2, allowing IL-1α dissociation and subsequent processing by calpain. Importantly, ECs could be primed by IL-1α from adjacent damaged VSMCs, and necrotic ECs could activate neighboring normal ECs and VSMCs, causing them to release inflammatory cytokines and up-regulate adhesion molecules, thus amplifying inflammation. These data unravel the molecular mechanisms and interplay between damaged ECs and VSMCs that lead to activation of IL-1α and, thus, initiation of adaptive responses that cause graft rejection.  相似文献   
9.
Toxocariasis is a soil-transmitted helminthozoonosis due to infection of humans by larvae of Toxocara canis. The disease could produce cognitive and behavioral disturbances especially in children. Meanwhile, in our modern era, the incidence of immunosuppression has been progressively increasing due to increased incidence of malignancy as well as increased use of immunosuppressive agents. The present study aimed at comparing some of the pathological and immunological alterations in the brain of normal and immunosuppressed mice experimentally infected with T. canis. Therefore, 180 Swiss albino mice were divided into 4 groups including normal (control) group, immunocompetent T. canis-infected group, immunosuppressed group (control), and immunosuppressed infected group. Infected mice were subjected to larval counts in the brain, and the brains from all mice were assessed for histopathological changes, astrogliosis, and IL-5 mRNA expression levels in brain tissues. The results showed that under immunosuppression, there were significant increase in brain larval counts, significant enhancement of reactive gliosis, and significant reduction in IL-5 mRNA expression. All these changes were maximal in the chronic stage of infection. In conclusion, the immunopathological alterations in the brains of infected animals were progressive over time, and were exaggerated under the effect of immunosuppression as did the intensity of cerebral infection.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号