首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   4篇
  2007年   2篇
  2006年   8篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  1999年   1篇
  1996年   1篇
  1994年   1篇
  1992年   2篇
  1980年   1篇
  1979年   1篇
  1926年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed.  相似文献   
2.
3.
4.
Understanding species differences in the placental transfer of monoclonal antibodies is important to inform species selection for nonclinical safety assessment, interpret embryo‐fetal changes observed in these studies, and extrapolate their human relevance. Data presented here for a fully human immunoglobulin G2 monoclonal antibody (IgG2X) revealed that, during organogenesis, in both the cynomolgus monkey (gestation day 35 [gd35]) and the rat (gd10) the extent of IgG2X placental transfer (approximately 0.5% maternal plasma concentration, MPC) was similar to the limited published human data for endogenous IgG. At this early gestational stage, IgG2X placental transfer was approximately 6‐fold higher in the rabbit (gd10). By the end of organogenesis, rat embryonic plasma concentrations (gd16) exceeded those in the cynomolgus monkey (gd50) by approximately 3‐fold. These data suggest that relative to the cynomolgus monkey, the rabbit (and to a lesser extent the rat) may overestimate potential harmful effects to the human embryo during this critical period of development. Beyond organogenesis, fetal IgG2X plasma concentrations increased approximately 10‐fold early in the second trimester (gd50–70) in the cynomolgus monkey and remained relatively unchanged thereafter (at approximately 5% MPC). Late gestational assessment was precluded in rabbits due to immunogenicity, but in rats, fetal IgG2X plasma concentrations increased more than 6‐fold from gd16 to gd21 (reaching approximately 15% MPC). In rats, maternal exposure consistent with that achieved by ICH S6(R1) high‐dose selection criteria resulted in embryonic plasma concentrations, reaching pharmacologically relevant levels during organogenesis. Furthermore, dose proportional exposure in both mothers and embryos indicated that this was unlikely to occur at the lower therapeutic dose levels used in humans  相似文献   
5.
The purposes of this study were to observe the presence of diurnal rhythms in plasma ions and metabolites levels in Thoroughbred racehorses under physical training, and to determine the time of blood sampling in clinical investigations. Plasma calcium, phosphorus, potassium, sodium, chloride, magnesium, iron, glucose, cholesterol, triglycerides, and total proteins levels were studied over a 72-h period. Blood samples were taken every 4 hours from five male and five female Thoroughbred racehorses under physical training. COSINOR analyses (P = 0.05) were done. Plasma potassium and triglycerides showed significant diurnal rhythms, with its acrophases occurring at dark period. No significant diurnal rhythms of other variables were found. It was concluded that, in Thoroughbred racehorses, the optimum time for potassium, and triglycerides sampling seems to be light period. And for other variables, time of diagnosis is not important.  相似文献   
6.
7.
Mutational analysis of the ribosomal protein Rpl10 from yeast   总被引:2,自引:0,他引:2  
Yeast Rpl10 belongs to the L10e family of ribosomal proteins. In the large (60 S) subunit, Rpl10 is positioned in a cleft between the central protuberance and the GTPase-activating center. It is loaded into the 60 S subunit at a late step in maturation. We have shown previously that Rpl10 is required for the release of the Crm1-dependent nuclear export adapter Nmd3, an event that also requires the cytoplasmic GTPase Lsg1. Here we have carried out an extensive mutational analysis of Rpl10 to identify mutations that would allow us to map activities to distinct domains of the protein to begin to understand the molecular interaction between Rpl10 and Nmd3. We found that mutations in a central loop (amino acids 102-112) had a significant impact on the release of Nmd3. This loop is unstructured in the crystal and solution structures of prokaryotic Rpl10 orthologs. Thus, the loop is not necessary for stable interaction of Rpl10 with the ribosome, suggesting that it plays a dynamic role in ribosome function or regulating the association of other factors. We also found that mutant Rpl10 proteins were engineered to be unable to bind to the ribosome accumulated in the nucleus. This was unexpected and may suggest a nuclear role for Rpl10.  相似文献   
8.
VC0702, a conserved hypothetical protein of unknown function from Vibrio cholerae, resides in a three-gene operon containing the MbaA gene that encodes for a GGDEF and EAL domain-containing protein which is involved in regulating formation of the extracellular matrix of biofilms in Vibrio cholerae. The VC0702 crystal structure has been determined at 2.0 A and refined to Rwork = 22.8% and Rfree = 26.3%. VC0702 crystallized in an orthorhombic crystal lattice in the C222(1) space group with dimensions of a = 66.61 A, b = 88.118 A, and c = 118.35 A with a homodimer in the asymmetric unit. VC0702, which forms a mixed alpha + beta three-layered alphabetaalpha sandwich, belongs to the Pfam DUF84 and COG1986 families of proteins. Sequence conservation within the DUF84 and COG1986 families was used to identify a conserved patch of surface residues that define a cleft and potential substrate-binding site in VC0702. The three-dimensional structure of VC0702 is similar to that of Mj0226 from Methanococcus janeschii, which has been identified as a novel NTPase that binds NTP in a deep cleft similarly located to the conserved patch of surface residues that define an analogous cleft in VC0702. Collectively, the data suggest that VC0702 may have a biochemical function that involves NTP binding and phosphatase activity of some kind, and is likely involved in regulation of the signaling pathway that controls biofilm formation and maintenance in Vibrio cholerae.  相似文献   
9.
10.
The replication terminator protein (RTP) is a dimeric molecule that binds specific sequences within the replication terminus of the Bacillus subtilis chromosome and prevents the passage of replication forks. The gene for RTP has been expressed in Escherichia coli, and the protein has been purified in amounts sufficient for structural studies by nuclear magnetic resonance (NMR) and x-ray crystallography. One-dimensional NMR experiments show that the protein has a well-folded compact tertiary structure, as well as a high alpha-helical content. Circular dichroism (CD) studies confirm this finding and show that approximately 32% of the protein is alpha-helical. The terminator protein has been crystallized as monoclinic plates that diffract to better than 2.5 A and are suitable for high resolution structural analysis. Precession photographs show the space group to be C2 with unit cell dimensions a = 77 A, b = 53 A, c = 70 A, and beta = 90 degrees, and two molecules occupy the asymmetric unit. With a view to producing crystals of an RTP.DNA complex, gel-shift assays were performed to establish the shortest sequence of DNA that is required for tight binding to RTP. These clearly show that two turns of DNA are required, centered on an 8-base pair consensus sequence, to elicit relatively stable binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号