首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   17篇
  2021年   6篇
  2019年   3篇
  2018年   5篇
  2017年   2篇
  2016年   9篇
  2015年   4篇
  2014年   10篇
  2013年   10篇
  2012年   10篇
  2011年   10篇
  2010年   3篇
  2009年   10篇
  2008年   3篇
  2007年   6篇
  2006年   14篇
  2005年   9篇
  2004年   6篇
  2003年   13篇
  2002年   5篇
  2001年   3篇
  1999年   3篇
  1998年   5篇
  1996年   2篇
  1995年   5篇
  1993年   2篇
  1992年   2篇
  1990年   3篇
  1984年   3篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1969年   1篇
  1967年   1篇
  1966年   2篇
  1965年   3篇
  1964年   4篇
  1963年   1篇
  1962年   2篇
  1961年   2篇
  1958年   1篇
  1933年   2篇
  1927年   2篇
  1923年   1篇
  1903年   1篇
  1902年   1篇
  1900年   1篇
排序方式: 共有208条查询结果,搜索用时 78 毫秒
1.
Pigment-based coloration is a common trait found in a variety of organisms across the tree of life. For example, calcareous avian eggs are natural structures that vary greatly in color, yet just a handful of tetrapyrrole pigment compounds are responsible for generating this myriad of colors. To fully understand the diversity and constraints shaping nature’s palette, it is imperative to characterize the similarities and differences in the types of compounds involved in color production across diverse lineages. Pigment composition was investigated in eggshells of eleven paleognath bird taxa, covering several extinct and extant lineages, and shells of four extant species of mollusks. Birds and mollusks are two distantly related, calcareous shell-building groups, thus characterization of pigments in their calcareous structures would provide insights to whether similar compounds are found in different phyla (Chordata and Mollusca). An ethylenediaminetetraacetic acid (EDTA) extraction protocol was used to analyze the presence and concentration of biliverdin and protoporphyrin, two known and ubiquitous tetrapyrrole avian eggshell pigments, in all avian and molluscan samples. Biliverdin was solely detected in birds, including the colorful eggshells of four tinamou species. In contrast, protoporphyrin was detected in both the eggshells of several avian species and in the shells of all mollusks. These findings support previous hypotheses about the ubiquitous deposition of tetrapyrroles in the eggshells of various bird lineages and provide evidence for its presence also across distantly related animal taxa.  相似文献   
2.
Whole-genome duplications (WGDs) and chromosome rearrangements (CRs) play the key role in driving the diversification and evolution of plant lineages. Although the direct link between WGDs and plant diversification is well documented, relatively few studies focus on the evolutionary significance of CRs. The cruciferous tribe Thlaspideae represents an ideal model system to address the role of large-scale chromosome alterations in genome evolution, as most Thlaspideae species share the same diploid chromosome number (2n = 2= 14). Here we constructed the genome structure in 12 Thlaspideae species, including field pennycress (Thlaspi arvense) and garlic mustard (Alliaria petiolata). We detected and precisely characterized genus- and species-specific CRs, mostly pericentric inversions, as the main genome-diversifying drivers in the tribe. We reconstructed the structure of seven chromosomes of an ancestral Thlaspideae genome, identified evolutionary stable chromosomes versus chromosomes prone to CRs, estimated the rate of CRs, and uncovered an allohexaploid origin of garlic mustard from diploid taxa closely related to A. petiolata and Parlatoria cakiloidea. Furthermore, we performed detailed bioinformatic analysis of the Thlaspideae repeatomes, and identified repetitive elements applicable as unique species- and genus-specific barcodes and chromosome landmarks. This study deepens our general understanding of the evolutionary role of CRs, particularly pericentric inversions, in plant genome diversification, and provides a robust base for follow-up whole-genome sequencing efforts.  相似文献   
3.
4.
To efficiently enter host cells, apicomplexan parasites such as Toxoplasma gondii rely on an apical complex composed of tubulin‐based structures as well as two sets of secretory organelles named micronemes and rhoptries. The trafficking and docking of these organelles to the apical pole of the parasite is crucial for the discharge of their contents. Here, we describe two proteins typically associated with microtubules, Centrin 2 (CEN2) and Dynein Light Chain 8a (DLC8a), that are required for efficient host cell invasion. CEN2 localizes to four different compartments, and remarkably, conditional depletion of the protein occurs in stepwise manner, sequentially depleting the protein pools from each location. This phenomenon allowed us to discern the essential function of the apical pool of CEN2 for microneme secretion, motility, invasion and egress. DLC8a localizes to the conoid, and its depletion also perturbs microneme exocytosis in addition to the apical docking of the rhoptry organelles, causing a severe defect in host cell invasion. Phenotypic characterization of CEN2 and DLC8a indicates that while both proteins participate in microneme secretion, they likely act at different steps along the cascade of events leading to organelle exocytosis.  相似文献   
5.
Chromosome rearrangements may result in both decrease and increase of chromosome numbers. Here we have used comparative chromosome painting (CCP) to reconstruct the pathways of descending and ascending dysploidy in the genus Boechera (tribe Boechereae, Brassicaceae). We describe the origin and structure of three Boechera genomes and establish the origin of the previously described aberrant Het and Del chromosomes found in Boechera apomicts with euploid (2n = 14) and aneuploid (2n = 15) chromosome number. CCP analysis allowed us to reconstruct the origin of seven chromosomes in sexual Bstricta and apomictic B. divaricarpa from the ancestral karyotype (n = 8) of Brassicaceae lineage I. Whereas three chromosomes (BS4, BS6, and BS7) retained their ancestral structure, five chromosomes were reshuffled by reciprocal translocations to form chromosomes BS1‐BS3 and BS5. The reduction of the chromosome number (from x = 8 to x = 7) was accomplished through the inactivation of a paleocentromere on chromosome BS5. In apomictic 2n = 14 plants, CCP identifies the largely heterochromatic chromosome (Het) being one of the BS1 homologues with the expansion of pericentromeric heterochromatin. In apomictic B. polyantha (2n = 15), the Het has undergone a centric fission resulting in two smaller chromosomes – the submetacentric Het′ and telocentric Del. Here we show that new chromosomes can be formed by a centric fission and can be fixed in populations due to the apomictic mode of reproduction.  相似文献   
6.
Genetic admixture is supposed to be an important trigger of species expansions because it can create the potential for selection of genotypes suitable for new climatic conditions. Up until now, however, no continent‐wide population genetic study has performed a detailed reconstruction of admixture events during natural species expansions. To fill this gap, we analysed the postglacial history of Alnus glutinosa, a keystone species of European swamp habitats, across its entire distribution range using two molecular markers, cpDNA and nuclear microsatellites. CpDNA revealed multiple southern refugia located in the Iberian, Apennine, Balkan and Anatolian Peninsulas, Corsica and North Africa. Analysis of microsatellites variation revealed three main directions of postglacial expansion: (i) from the northern part of the Iberian Peninsula to Western and Central Europe and subsequently to the British Isles, (ii) from the Apennine Peninsula to the Alps and (iii) from the eastern part of the Balkan Peninsula to the Carpathians followed by expansion towards the Northern European plains. This challenges the classical paradigm that most European populations originated from refugial areas in the Carpathians. It has been shown that colonizing lineages have met several times and formed secondary contact zones with unexpectedly high population genetic diversity in Central Europe and Scandinavia. On the contrary, limited genetic admixture in southern refugial areas of A. glutinosa renders rear‐edge populations in the Mediterranean region more vulnerable to extinction due to climate change.  相似文献   
7.
8.
9.
Onchocerciasis, caused by the filarial nematode Onchocerca volvulus, is a parasitic disease leading to debilitating skin disease and blindness, with major economic and social consequences. The pathology of onchocerciasis is principally considered to be a consequence of long-standing host inflammatory responses. In onchocerciasis a subcutaneous nodule is formed around the female worms, the core of which is a dense infiltrate of inflammatory cells in which microfilariae are released. It has been established that the formation of nodules is associated with angiogenesis. In this study, we show using specific markers of endothelium (CD31) and lymphatic endothelial cells (Lyve-1, Podoplanin) that not only angiogenesis but also lymphangiogenesis occurs within the nodule. 7% of the microfilariae could be found within the lymphatics, but none within blood vessels in these nodules, suggesting a possible route of migration for the larvae. The neovascularisation was associated with a particular pattern of angio/lymphangiogenic factors in nodules of onchocerciasis patients, characterized by the expression of CXCL12, CXCR4, VEGF-C, Angiopoietin-1 and Angiopoietin-2. Interestingly, a proportion of macrophages were found to be positive for Lyve-1 and some were integrated into the endothelium of the lymphatic vessels, revealing their plasticity in the nodular micro-environment. These results indicate that lymphatic as well as blood vascularization is induced around O. volvulus worms, either by the parasite itself, e.g. by the release of angiogenic and lymphangiogenic factors, or by consecutive host immune responses.  相似文献   
10.
Although the evolutionary drivers of genome size change are known, the general patterns and mechanisms of plant genome size evolution are yet to be established. Here we aim to assess the relative importance of proliferation of repetitive DNA, chromosomal variation (including polyploidy), and the type of endoreplication for genome size evolution of the Pleurothallidinae, the most species-rich orchid lineage. Phylogenetic relationships between 341 Pleurothallidinae representatives were refined using a target enrichment hybrid capture combined with high-throughput sequencing approach. Genome size and the type of endoreplication were assessed using flow cytometry supplemented with karyological analysis and low-coverage Illumina sequencing for repeatome analysis on a subset of samples. Data were analyzed using phylogeny-based models. Genome size diversity (0.2–5.1 Gbp) was mostly independent of profound chromosome count variation (2n = 12–90) but tightly linked with the overall content of repetitive DNA elements. Species with partial endoreplication (PE) had significantly greater genome sizes, and genomic repeat content was tightly correlated with the size of the non-endoreplicated part of the genome. In PE species, repetitive DNA is preferentially accumulated in the non-endoreplicated parts of their genomes. Our results demonstrate that proliferation of repetitive DNA elements and PE together shape the patterns of genome size diversity in orchids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号