首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   353篇
  免费   29篇
  2021年   3篇
  2018年   3篇
  2017年   6篇
  2016年   10篇
  2015年   19篇
  2014年   14篇
  2013年   28篇
  2012年   19篇
  2011年   22篇
  2010年   14篇
  2009年   12篇
  2008年   24篇
  2007年   19篇
  2006年   9篇
  2005年   13篇
  2004年   15篇
  2003年   18篇
  2002年   13篇
  2001年   18篇
  2000年   9篇
  1999年   5篇
  1998年   7篇
  1997年   2篇
  1996年   5篇
  1995年   6篇
  1994年   3篇
  1993年   6篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   5篇
  1967年   2篇
  1965年   1篇
  1964年   1篇
排序方式: 共有382条查询结果,搜索用时 140 毫秒
1.
Changes in yield and quality of fresh tomatoes in response toair vapour pressure deficit (VPD) and plant fruit load werestudied under Mediterranean summer conditions. Plants thinnedto three or six fruits per truss were grown in two compartments,one at a VPD below 1.5 kPa, the other without VPD control. Theseasonal trend in fruit yield and quality was assessed fromApril to September by weekly measurement of number, fresh weightand dry matter content of harvested fruits, together with theoccurrence of blossom-end-rot (BER) and cracking. On two occasions,in July and September, sugar and acid content was measured atthree ripening stages. The seasonal decrease in fresh yieldwas attenuated at low VPD, because of higher individual fruitfresh weight, especially at low fruit load. Low VPD decreasedoccurrence of BER but like low fruit load, it increased fruitcracking. Fruit dry matter content was lower at low VPD, butwas unaffected by fruit load. Sugar content and the ratio ofsugars:acids was increased at high VPD and low fruit load, withinteractive effects depending on season and ripening stage.The influence of VPD on acid content differed with fruit loadand also changed during ripening and between seasons. Resultsshowed that water was the main limiting factor for growth offruits picked in July; at this time, reducing fruit load topromote mean fruit size had negative effects on BER and cracking.Reducing VPD reduced BER but had a negative effect on crackingand diluted both the dry matter and sugar content. For fruitsharvested later in summer, these negative effects were attenuatedbecause fruit growth was also carbon limited. Copyright 2000Annals of Botany Company Lycopersicon esculentum Mill., tomato, water and carbon stress, yield, quality, dry matter, sugar, acid, BER, volatile composition  相似文献   
2.
3.
Summary Spontaneous mutants of Escherichia coli K12 displaying an increased level of the kanamycin resistance conferred by plasmid pGR71 were selected. Several mutants obtained in this way apparently carry large chromosomal deletions extending into galU and/or bglY (27 min). This positive selection of deletions allowed detection of a new locus located between galU and bglY. Deletions of this locus are responsible for increased resistance to kanamycin (Irk), decreased resistance to l-serine in minimal medium (Drs) and decreased resistance to chloramphenicol (Drc) when a cat gene is present in the bacteria.  相似文献   
4.
5.
Seed size variation: magnitude,distribution, and ecological correlates   总被引:7,自引:0,他引:7  
Summary We examined seed-mass variation in 39 species (46 populations) of plants in eastern-central Illinois, USA. The coefficient of variation of seed mass commonly exceeded 20%. Significant variation in mean seed mass occurred among conspecific plants in most species sampled (by hierarchical ANOVA), averaging 38% of total variance. For most species, within-plant variation was the larger component of total variance, averaging 62% of total variance. Variation in seed mass among fruits within crops was significant in most species tested.We conclude that variation in seed mass among and within plants is widespread and common. There was little evidence of trade-offs between number of seeds and mean or variance of seed mass, and little correlational evidence of local competition for maternal resources. No consistent ecological (dispersal mode and growth form) correlates of variance of seed mass were evident.  相似文献   
6.
Genetic control of insulin dependent diabetes mellitus (IDDM) is mainly dependent on HLA genes in the major histocompatibility complex (MHC). The participation of TAP1 and TAP2 genes, located in the MHC region and coding for antigenic peptide transporters, was investigated in 116 IDDM patients and 98 normal controls using oligotyping after DNA amplification. The TAP2-B allele had a dominant protective effect, additive to that of the DR2 haplotype but antagonist to the susceptibility associated with the DR3 and/or DR4 haplotypes. The TAP2-A allele, in the homozygous state, had a predisposing effect. TAP1 allelic distribution did not differ among IDDM patients and controls. These data argue in favour of the role of peptide transporter gene in diabetogenesis.  相似文献   
7.
8.
Abstract The putative chaperone-like protein ClpE, required for biogenesis of the Escherichia coli capsule-like antigen CS31A, was compared with ten known periplasmic chaperones from E. coli, Klebsiella pneumoniae, Bordetella pertussis, Haemophilus influenzae and Yersinia pestis . The amino acid sequence alignment was superimposed onto the three-dimensional structure of the PapD chaperone of uropathogenic E. coli , and amino acid residues involved in maintaining the structure integrity of the suggested binding site were found identical in most of the 11 chaperones. Construction of a phylogenetic tree to investigate the relationship within the chaperone family has revealed interesting degrees of relatedness between the different proteins.  相似文献   
9.
The authors report their experience with the use of spermatids in TESE programs where mature spermatozoa could not be isolated from testicular biopsies. The details of the indications for spermatid insemination, the technicity of the procedure and the results are exposed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号