首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
  2019年   1篇
  2015年   1篇
  2013年   5篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2004年   1篇
  2001年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Biochar additions can improve soil fertility and sequester carbon, but biochar effects have been investigated primarily in agricultural systems. Biochar from spruce and maple sawdust feedstocks (with and without inorganic phosphorus in a factorial design) were added to plots in a commercially managed temperate hardwood forest stand in central Ontario, Canada; treatments were applied as a top‐dressing immediately prior to fall leaf abscission in September 2011. Forests in this region have acidic, sandy soils, and due to nitrogen deposition may exhibit phosphorus, calcium, and magnesium limitation. To investigate short‐term impacts of biochar application on soil nutrient supply and greenhouse gas fluxes as compared to phosphorus fertilization, data were collected over the first year after treatment application; linear mixed models were used to analyze data. Two to six weeks after treatment application, there were higher concentrations of potassium in spruce and maple biochar plots, and phosphorus in spruce biochar plots, as compared to the control treatment. There were higher concentrations of calcium, magnesium, and phosphorus in the phosphorus plots. In the following spring and summer (9–12 months after treatment application), there were higher soil calcium concentrations in maple biochar plots, and phosphorus plots still had higher soil phosphorus concentrations than control plots. No treatment effects on fluxes of carbon dioxide, methane, or nitrous oxide were detected in the field; however, laboratory incubations after 12 months showed higher microbial respiration in soils from maple biochar plots as compared to spruce biochar, despite no effect on microbial biomass. The results suggest that the most important short‐term impact of biochar additions in this system is the increased supply of the limiting plant nutrients phosphorus and calcium. We expect that larger changes in mineral soil physical and chemical properties will occur when the surface‐applied biochar becomes incorporated into the soil after a few years.  相似文献   
2.
To study vegetation feedbacks of nutrient addition on carbon sequestration capacity, we investigated vegetation and ecosystem CO2 exchange at Mer Bleue Bog, Canada in plots that had been fertilized with nitrogen (N) or with N plus phosphorus (P) and potassium (K) for 7–12 years. Gross photosynthesis, ecosystem respiration, and net CO2 exchange were measured weekly during May–September 2011 using climate‐controlled chambers. A substrate‐induced respiration technique was used to determine the functional ability of the microbial community. The highest N and NPK additions were associated with 40% less net CO2 uptake than the control. In the NPK additions, a diminished C sink potential was due to a 20–30% increase in ecosystem respiration, while gross photosynthesis rates did not change as greater vascular plant biomass compensated for the decrease in Sphagnum mosses. In the highest N‐only treatment, small reductions in gross photosynthesis and no change in ecosystem respiration led to the reduced C sink. Substrate‐induced microbial respiration was significantly higher in all levels of NPK additions compared with control. The temperature sensitivity of respiration in the plots was lower with increasing cumulative N load, suggesting more labile sources of respired CO2. The weaker C sink potential could be explained by changes in nutrient availability, higher woody : foliar ratio, moss loss, and enhanced decomposition. Stronger responses to NPK fertilization than to N‐only fertilization for both shrub biomass production and decomposition suggest that the bog ecosystem is N‐P/K colimited rather than N‐limited. Negative effects of further N‐only deposition were indicated by delayed spring CO2 uptake. In contrast to forests, increased wood formation and surface litter accumulation in bogs seem to reduce the C sink potential owing to the loss of peat‐forming Sphagnum.  相似文献   
3.
Although Sphagnum (moss)-dominated, northern peatlandecosystems harbor methane (CH4)-producing microorganisms(methanogens) and are a significant source of atmosphericCH4, rates of CH4 production vary widely amongdifferent systems. Very little work has been done to examine whetherconcentrations of cations and metal elements may account for thevariability. We examined rates of CH4 production in peat fromfive geographically and functionally disparateSphagnum-dominated peatlands by incubating peat samples invitro with and without additions of trace metals (Fe, Ni, Co) andbase cations (Ca, Li, Na). In peat from the most mineral poor sites, theaddition of metals and Na enhanced CH4 production beyond thatobserved in controls. The same treatments in mineral rich sites yieldedno effect or an inhibition of CH4 production. None of thetreatments affected anaerobic respiration, measured as CO2production, in the in vitro incubations of peat, except addedcitrate, suggesting that methanogens, and not the entire anaerobiccommunity, can be limited by the availability of metal elements andcations.  相似文献   
4.
Despite the importance of understanding controls on microbial carbon (C) mineralization in peat soils, the role of vascular plant root exudates is still unclear. To determine whether root exudates could stimulate enhanced decomposition of peat, we utilized an in-vitro method involving the addition of a solution similar to root exudates (6 glucose-C: 2 citrate-C: 2 amino acid-C, at 3 addition levels) to peat, incubating the mixture and measuring CO2 produced over 20 d and microbial biomass and dissolved organic carbon (DOC) at the end of the incubation. We defined priming as inorganic C (IC) production (CO2 + calculated dissolved inorganic C) during the incubation being greater than that attributed to the control peat plus the added C. An addition level of 0.083 mg C g?1 dry peat, estimated to represent root exudation over one 12-h sunny day in a bog, caused an enhancement in IC production that exceeded that produced in the controls and the amount of added C after 8 d, with rates levelling to control values after 15 d. At the end of the incubation nearly 3 times the amount added C had been mineralized, relative to the control, however this represented only 4% of total microbial respiration in the controls. Although the priming effect pattern appeared to be real throughout repeated measurements in our experiments, the statistical probabilities were not always large due to high variability in background CO2 production levels. Given the observed long lag-times and overall small magnitude and large variability in observed effects, we conclude that although priming of decomposition appears to occur in peatlands, it likely has only a minor overall impact on net C loss to the atmosphere.  相似文献   
5.
The active methanotroph community was investigated in two contrasting North American peatlands, a nutrient-rich sedge fen and nutrient-poor Sphagnum bog using in vitro incubations and 13C-DNA stable-isotope probing (SIP) to measure methane (CH4) oxidation rates and label active microbes followed by fingerprinting and sequencing of bacterial and archaeal 16S rDNA and methane monooxygenase (pmoA and mmoX) genes. Rates of CH4 oxidation were slightly, but significantly, faster in the bog and methanotrophs belonged to the class Alphaproteobacteria and were similar to other methanotrophs of the genera Methylocystis, Methylosinus, and Methylocapsa or Methylocella detected in, or isolated from, European bogs. The fen had a greater phylogenetic diversity of organisms that had assimilated 13C, including methanotrophs from both the Alpha- and Gammaproteobacteria classes and other potentially non-methanotrophic organisms that were similar to bacteria detected in a UK and Finnish fen. Based on similarities between bacteria in our sites and those in Europe, including Russia, we conclude that site physicochemical characteristics rather than biogeography controlled the phylogenetic diversity of active methanotrophs and that differences in phylogenetic diversity between the bog and fen did not relate to measured CH4 oxidation rates. A single crenarchaeon in the bog site appeared to be assimilating 13C in 16S rDNA; however, its phylogenetic similarity to other CO2-utilizing archaea probably indicates that this organism is not directly involved in CH4 oxidation in peat.  相似文献   
6.
Abstract We examined aerobic and anaerobic microbial carbon dioxide (CO2) and methane (CH4) exchange in peat samples representing different profiles at natural, mined, mined-abandoned, and restored northern peatlands and characterized the nutrient and substrate chemistry and microbial biomass of these soils. Mining and abandonment led to reduced nutrient and substrate availability and occasionally drier conditions in surface peat resulting in a drastic reduction in CO2 and CH4 production, in agreement with previous studies. Owing mainly to wetter conditions, CH4 production and oxidation were faster in restored block-cut than natural sites, whereas in one restored site, increased substrate and nutrient availability led to much more rapid rates of CO2 production. Our work in restored block-cut sites compliments that in vacuum-harvested peatlands undergoing more recent active restoration attempts. The sites we examined covered a large range of soil C substrate quality, nutrient availability, microbial biomass, and microbial activities, allowing us to draw general conclusions about controls on microbial CO2 and CH4 dynamics using stepwise regression analysis among all sites and soil depths. Aerobic and anaerobic decomposition of peat was constrained by organic matter quality, particularly phosphorus (P) and carbon (C) chemistry, and closely linked to the size of the microbial biomass supported by these limiting resources. Methane production was more dominantly controlled by field moisture content (a proxy for anaerobism), even after 20 days of anaerobic laboratory incubation, and to a lesser extent by C substrate availability. As methanogens likely represented only a small proportion of the total microbial biomass, there were no links between total microbial biomass and CH4 production. Methane oxidation was controlled by the same factors influencing CH4 production, leading to the conclusion that CH4 oxidation is primarily controlled by substrate (that is, CH4) availability. Although restoring hydrology similar to natural sites may re-establish CH4 dynamics, there is geographic or site-specific variability in the ability to restore peat decomposition dynamics.  相似文献   
7.
Slow rates of plant production and decomposition in ombrotrophic bogs are believed to be partially the result of low nutrient availability. To test the effect of nutrient availability on decomposition, carbon dioxide (CO2) flux dynamics, microbial biomass, and nutrients, we added nitrogen (N) with phosphorus (P) and potassium (K), to prevent limitation of the latter 2 nutrients, over 2 growing seasons to plots at Mer Bleue peatland, Ontario, Canada. After the first growing season, increasing N fertilization (with constant P and K) decreased in vitro CO2 production potential and increased microbial biomass measured with a chloroform fumigation-extraction technique in the upper peat profile, while by the end of the second season, CO2 production potential was increased in response to N plus PK treatment, presumably due to more easily decomposable newly formed plant material. In situ CO2 fluxes measured using chamber-techniques over the second year corroborated this presumption, with greater photosynthetic CO2 uptake and ecosystem respiration (ER) during high N plus PK treatments. The more efficient microbial community, with slower CO2 production potential and larger biomass, after the first year was characterized by larger fungal biomass measured with signature phospholipid fatty acids. The majority of N was likely quickly sequestered by the vegetation and transferred to dissolved organic forms and microbial biomass in the upper parts of the peat profile, while additional P relative to controls was distributed throughout the profile, implying that the vegetation at the site was N limited. However, in situ CO2 flux data suggested the possibility of P or NPK limitation. We hypothesize that nutrient deposition may lead to enhanced C uptake by altering the microbial community and decomposition, however this pattern disappears through subsequent changes in the vegetation and production of more readily decomposable plant tissues.  相似文献   
8.
Selective inhibition of substrate-induced respiration with antibiotics cycloheximide and streptomycin sulphate provided insight into eukaryotic versus prokaryotic activities in surface peat soil of three Canadian peatlands. Prokaryotic and eukaryotic communities in peatlands are important in the net sequestration of atmospheric carbon dioxide and therefore play a unique role in global carbon cycling. Selective inhibition techniques were generally successful, with a maximum non-target inhibition of only 17%. Assuming that eukaryotic and prokaryotic activities were dominated by fungi and bacteria respectively, across 3 ecologically and hydrologically diverse and spatially dispersed peatlands, we demonstrated bacterial dominance in a bog and a poor fen both with acidic and primarily Sphagnum derived peat soil and in a near pH neutral wetter rich fen with sedge peat (fungal to bacterial activity ratio = 0.31 to 0.68). These results differ in that in other acidic environments, such as conifer forest soils, fungal to bacterial activity ratios are mostly greater than 1 indicative of fungal dominance.  相似文献   
9.
Information about the impact of nitrogen (N) deposition on the fate of deposited N in peatland ecosystems is lacking. Thus we investigated the fate of experimentally added 15N in long-term N-fertilized treatments in a Sphagnum-dominated ombrotrophic bog. Fertilization significantly stimulated vascular plant and suppressed Sphagnum and Polytrichum moss growth. N content in peat, mosses, and vascular plants was raised by the fertilizer addition and reached a maximum at 3.2 g m?2 N input level with phosphorus (P) and potassium (K) addition. Most of N was retained in the vegetation and upper 10 cm of the peat. When N deposition equalled 1.6 g m?2 and less, or 3.2 g m?2 N with P and K addition, no inorganic N leaching was observed on the plots. This result indicates that co-fertilization with P and K raised the N retention capacity and that critical N loads with respect to N saturation depend on P and K availability. Most of the deposited 15N was recovered in the bulk peat, which may be related to a rapid immobilization of inorganic N by microorganisms and mycorrhizal assimilation. Increase of N, P, and K fertilization increased the contribution of vascular plants to N retention significantly and reduced those of mosses. The increase was mainly related to enhanced productivity, vascular biomass and N content in tissues; the reduced retention by mosses resulted from both reduced moss biomass and assimilation. The study shows that the N filter function of ombrotrophic bogs will be influenced by interactions with other nutrients and shifts in plant community structure.  相似文献   
10.
The main gap in our knowledge about what determines the rate of CH4 oxidation in forest soils is the biology of the microorganisms involved, the identity of which remains unclear. In this study, we used stable-isotope probing (SIP) following 13CH4 incorporation into phospholipid fatty acids (PLFAs) and DNA/RNA, and sequencing of methane mono-oxygenase ( pmoA ) genes, to identify the influence of variation in community composition on CH4 oxidation rates. The rates of 13C incorporation into PLFAs differed between horizons, with low 13C incorporation in the organic soil and relatively high 13C incorporation into the two mineral horizons. The microbial community composition of the methanotrophs incorporating the 13C label also differed between horizons, and statistical analyses suggested that the methanotroph community composition was a major cause of variation in CH4 oxidation rates. Both PLFA and pmoA -based data indicated that CH4 oxidizers in this soil belong to the uncultivated 'upland soil cluster α'. CH4 oxidation potential exhibited the opposite pattern to 13C incorporation, suggesting that CH4 oxidation potential assays may correlate poorly with in situ oxidation rates. The DNA/RNA-SIP assay was not successful, most likely due to insufficient 13C-incorporation into DNA/RNA. The limitations of the technique are briefly discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号