首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1235篇
  免费   79篇
  国内免费   2篇
  2023年   54篇
  2022年   28篇
  2021年   48篇
  2020年   49篇
  2019年   42篇
  2018年   85篇
  2017年   83篇
  2016年   105篇
  2015年   68篇
  2014年   102篇
  2013年   150篇
  2012年   101篇
  2011年   126篇
  2010年   79篇
  2009年   84篇
  2008年   30篇
  2007年   20篇
  2006年   16篇
  2005年   4篇
  2004年   7篇
  2003年   2篇
  2002年   6篇
  2001年   9篇
  2000年   5篇
  1999年   2篇
  1998年   3篇
  1997年   5篇
  1995年   2篇
  1993年   1篇
排序方式: 共有1316条查询结果,搜索用时 31 毫秒
1.
This study aimed to investigate the protective effects of arbutin (ARB) against brain injury induced in rats with potassium bromate (KBrO3). The rats were divided into four groups as Group 1: Control (0.9% NaCl ml/kg/day p.), Group 2: KBrO3 (100 mg/kg (gavage), Group 3: ARB (50 mg/kg/day p.), and Group 4: KBrO3 + ARB (100 mg/kg (gavage) + 50 mg/kg/day p.). At the end of the fifth day of the study, the rats in all groups were killed, and their brain tissues were collected. In the collected brain tissues, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) levels were measured, and routine histopathological examinations were made. The MDA levels in the group that was exposed to KBrO3 were significantly higher than those in the control group (p ˂ 0.001). In comparison to the KBrO3 group, the MDA levels in the KBrO3 + ARB group were significantly lower (p ˂ 0.001). It was observed that SOD and CAT enzyme activity levels were significantly lower in the KBrO3 group compared to the control group (p ˂ 0.001), while these levels were significantly higher in the KBrO3 + ARB group than in the KBrO3 group (p ˂ 0.001). Additionally, the group that was subjected to KBrO3 toxicity, as well as ARB administration, had much lower levels of histopathologic signs than the group that was subjected to KBrO3 toxicity only. Consequently, it was found that KBrO3 exposure led to injury in the brain tissues of the rats, and using ARB was effective in preventing this injury.  相似文献   
2.
The body can host the spread of prostate cancer cells. Metastases from prostate cancer are more frequently seen in the brain, liver, lungs, and lymph nodes. A well-known antidiabetic drug, metformin, is also known to have antitumor effects. Our study focuses on the evaluation of potential metformin protective effects on brain and cerebellum damage in streptozotocin (STZ)-induced diabetic and Dunning prostate cancer models. In this investigation, six groups of male Copenhagen rats were created: control, diabetic (D), cancer (C), diabetic + cancer (DC), cancer + metformin, and diabetic + cancer + metformin. The brain and cerebellum tissues of the rats were taken after sacrifice. Oxidative stress markers including reduced glutathione level, lipid peroxidation, glutathione reductase, glutathione peroxidase, glutathione-S-transferase, catalase, superoxide dismutase activities, reactive oxygen species, total oxidant and total antioxidant status, lactate dehydrogenase, xanthine oxidase, acetylcholinesterase activities, protein carbonyl contents, nitric oxide and OH-proline levels, sodium potassium ATPase, carbonic anhydrase, and glucose-6-phosphate dehydrogenase activities; glycoprotein levels including hexose, hexosamine, fucose, and sialic acid levels; and histone deacetylase activity as a cancer marker were determined. Oxidative stress markers were impaired and glycoprotein levels and histone deacetylase activity were increased in the D, C, and DC groups. Metformin therapy reversed these effects. Metformin was found to protect the brain and cerebellum of STZ-induced diabetic rats with Dunning prostate cancer from harm caused by MAT-Lylu metastatic cells.  相似文献   
3.
In this article, photoluminescence (PL) and thermoluminescence (TL) properties of ZrO2, ZrO2:Dy3+, ZrO2:Dy3+–Gd3+, ZrO2:Dy3+–Yb3+, ZrO2:Dy3+–Er3+, and ZrO2:Dy3+–Sm3+ phosphors synthesized by the Pechini method were investigated. The crystal structure, thermal properties, morphology, PL and TL properties were investigated using X-ray powder diffraction (XRD), differential thermal analysis/thermogravimetric analysis (DTA/TGA), scanning electron microscopy (SEM), PL and TL, respectively. The room temperature emission bands corresponding to 4F9/2 → 6HJ (J = 9/2, 11/2, 13/2 and 15/2) transitions of Dy3+ ions were measured. The phosphors were analysed using TmTSTOP, variable dose, and computerized glow curve fitting methods. Reusability, dose–response, and fading characteristics were investigated. The phosphors have a natural TL emission that vanished by heating treatment. Moreover, new peaks with similar properties to the natural emissions were observed after high-dose irradiation and long-term fading experiments. The glow curves of the phosphors have 13 individual peaks and many low- and high-temperature satellite peaks. The origin of the peaks is ZrO2 host material and doping with rare-earth ions (Gd3+, Dy3+, Yb3+, Er3+ and Sm3+) does not lead to a new glow peak. The dopants cause drastic changes in individual peak intensities of ZrO2.The initial fading rates of all the phosphors are relatively fast, but they slow down as time goes on.  相似文献   
4.
Protoplasma - Watermelon and melon are members of the Cucurbitaceae family including economically significant crops in the world. The expansin protein family, which is one of the members of the...  相似文献   
5.
In this study, three new axially disubstituted silicon phthalocyanines ( SiPc1–3 ) and their quaternized phthalocyanine derivatives ( QSiPc1–3 ) were prepared and characterized. The biological properties (antioxidant, antimicrobial, antibiofilm, and microbial cell viability activities) of the water-soluble silicon phthalocyanines were examined, as well. A 1 % DMSO diluted with pure water was used as a solvent in biological activity studies. All the compounds exhibited high antioxidant activity. They displayed efficient antimicrobial and antimicrobial photodynamic therapeutic properties against various microorganisms, especially Gram (+) bacteria. Additionally, they demonstrated high antibiofilm activities against S. aureus and P. aeruginosa. In addition, 100 % bacterial reduction was obtained for all the studied phthalocyanines against E. coli viable cells. Besides, the DNA cleavage and binding features of compounds ( QSiPc1–3 ) were studied using pBR322 DNA and CT-DNA, respectively. Furthermore, the human topoisomerase I enzyme inhibition activities of compounds QSiPc1 – 3 were studied. Anticancer properties of the water-soluble compounds were investigated using cell proliferation MTT assay. They exhibited anticarcinogenic activity against the human colon cancer cell line (DLD-1). Compounds QSiPc1 and QSiPc3 displayed a high anticarcinogenic effect on the DLD-1 cell line. The obtained results indicated that all the studied compounds may be effective biological agents and anticancer drugs after further investigations.  相似文献   
6.
A thiol compound, glutathione, is essential for healthy cell defence against xenobiotics and oxidative stress. Glutathione reductase (GR) and glutathione S-transferase (GST) are two glutathione-related enzymes that function in the antioxidant and the detoxification systems. In this study, potential inhibitory effects of methyl 4-aminobenzoate derivatives on GR and GST were examined in vitro. GR and GST were isolated from human erythrocytes with 7.63 EU/mg protein and 5.66 EU/mg protein specific activity, respectively. It was found that compound 1 (methyl 4-amino-3-bromo-5-fluorobenzoate with Ki value of 0.325±0.012 μM) and compound 5 (methyl 4-amino-2-nitrobenzoate with Ki value of 92.41±22.26 μM) inhibited GR and GST stronger than other derivatives. Furthermore, a computer-aided method was used to predict the binding affinities of derivatives, ADME characteristics, and toxicities. Derivatives 4 (methyl 4-amino-2-bromobenzoate) and 6 (methyl 4-amino-2-chlorobenzoate) were estimated to have the lowest binding energies into GR and GST receptors, respectively according to results of in silico studies.  相似文献   
7.
In this study, a new phthalonitrile derivative namely 4-[(2,4-difluorophenyl)ethynyl]phthalonitrile ( 1 ) and its metal phthalocyanines ( 2 and 3 ) were synthesized. The resultant compounds were conjugated to silver nanoparticles and characterized using transmission electron microscopy (TEM) images. The biological properties of compounds ( 1 – 3 ), their nanoconjugates ( 4 – 6 ), and silver nanoparticles ( 7 ) were examined for the first time in this study. The antioxidant activities of biological candidates ( 1 – 7 ) were studied by applying the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The highest antioxidant activity was obtained 97.47 % for 200 mg/L manganese phthalocyanine-silver nanoconjugates ( 6 ). The antimicrobial and antimicrobial photodynamic therapy (APDT) activities of biological candidates ( 1 – 7 ) were examined using a micro-dilution assay. The highest MIC value was obtained 8 mg/L for nanoconjugate 6 against E. hirae. The studied compounds and their silver nanoconjugates exhibited high APDT activities against all the studied microorganisms. The most effective APDT activities were obtained 4 mg/L for nanoconjugates ( 5 and 6 ) against L. pneumophila and E. hirae, respectively. All the studied biological candidates displayed high cell viability inhibition activities against E. coli cell growth. The biofilm inhibition activities of the tested biological candidates were also investigated against S. aureus and P. Aeruginosa. Biological candidates ( 1 – 6 ) can be considered efficient metal nanoparticle-based materials for multi-disciplinary biological applications.  相似文献   
8.
In this work, the synthesis, characterization, and biological activities of a new series of 1,3,4-thiadiazole derivatives were investigated. The structures of final compounds were identified using 1H-NMR, 13C-NMR, elemental analysis, and HRMS. All the new synthesized compounds were then screened for their antimicrobial activity against four types of pathogenic bacteria and one fungal strain, by application of the MIC assays, using Ampicilin, Gentamycin, Vancomycin, and Fluconazole as standards. Among the compounds, the MIC values of 4 and 8 μg/mL of the compounds 3f and 3g , respectively, are remarkable and indicate that these compounds are good candidates for antifungal activity. The docking experiments were used to identify the binding forms of produced ligands with sterol 14-demethylase to acquire insight into relevant proteins. The MD performed about 100 ns simulations to validate selected compounds’ theoretical studies. Finally, using density functional theory (DFT) to predict reactivity, the chemical characteristics and quantum factors of synthesized compounds were computed. These results were then correlated with the experimental data. Furthermore, computational estimation was performed to predict the ADME properties of the most active compound 3f .  相似文献   
9.
Sunflower honey (SH) is bright yellow, fragrant, pollen-flavoured, slightly herbaceous and has a unique taste. The present research aims to examine the enzyme inhibitory, antioxidant, anti-inflammatory, antimicrobial and anti-quorum sensing activities and phenolic compositions of 30 sunflower honeys (SHs) produced from several regions of Turkey with chemometric study. SAH from Samsun exhibited the best antioxidant activity in β-carotene linoleic acid (IC50: 7.33±0.17 mg/mL) and CUPRAC (A0.50: 4.94±0.13 mg/mL) assays, anti-urease activity (60.63±0.87 %) and anti-inflammatory activity against COX-1 (73.94±1.08 %) and COX-2 (44.96±0.85 %). SHs exhibited mild antimicrobial activity against the test microorganisms while they showed high quorum sensing inhibition zones measured in the range of 42–52 mm against the CV026 strain. The phenolic composition was determined by high performance liquid chromatography with diode array detection (HPLC-DAD) system and levulinic, gallic, p-hydroxybenzoic, vanillic and p-coumaric acids were identified in all studied SHs. The classification of SHs was performed the using PCA and HCA. This study revealed that phenolic compounds and biological properties are effective in classification of SHs according to their geographical origin. The results suggest that studied SHs could be valued as potential agents with versatile bioactivities in oxidative stress-related disease, microbial infections, inflammation, melanoma, and peptic ulcer.  相似文献   
10.
In this study, new chiral thiourea and 1,3-thiazolidine-4,5-dione derivatives were synthesized, it was aimed to evaluate the various biological activities and molecular docking of these compounds. Firstly, the new thioureas ( 1 – 16 ) were obtained by reacting 1-naphthylisothiocyanate with different chiral amines. Then, the chiral thioureas were cyclized with oxalyl chloride to obtain 1,3-thiazolidine-4,5-dione derivatives ( 17 – 32 ). All compounds were evaluated with several in vitro antioxidant and enzyme inhibition activities. Compound 30 was the most active compound against AChE, with a value of IC50=8.09±0.58 μM. On the other hand, all compounds were tested in silico absorption, distribution, metabolism, and excretion (ADME) assays to better understand their bioavailability. These physicochemical properties, pharmacokinetics, and drug-likeness of all compounds were calculated using SwissADME. Furthermore, according to molecular docking analyses compound 30 exhibited significant binding affinities for all enzymes. Based on our overall observations, compound 30 could be recommended as a potential lead for the therapuetic of Alzheimer's.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号