首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   7篇
  国内免费   2篇
  2022年   1篇
  2021年   6篇
  2020年   1篇
  2019年   4篇
  2018年   6篇
  2017年   5篇
  2016年   17篇
  2015年   10篇
  2014年   9篇
  2013年   11篇
  2012年   12篇
  2011年   21篇
  2010年   5篇
  2009年   7篇
  2008年   3篇
  2007年   2篇
  2006年   5篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1983年   1篇
  1968年   1篇
  1961年   1篇
排序方式: 共有151条查询结果,搜索用时 15 毫秒
1.
The ZC3H14 gene, which encodes a ubiquitously expressed, evolutionarily conserved, nuclear, zinc finger polyadenosine RNA-binding protein, was recently linked to autosomal recessive, nonsyndromic intellectual disability. Although studies have been carried out to examine the function of putative orthologs of ZC3H14 in Saccharomyces cerevisiae, where the protein is termed Nab2, and Drosophila, where the protein has been designated dNab2, little is known about the function of mammalian ZC3H14. Work from both budding yeast and flies implicates Nab2/dNab2 in poly(A) tail length control, while a role in poly(A) RNA export from the nucleus has been reported only for budding yeast. Here we provide the first functional characterization of ZC3H14. Analysis of ZC3H14 function in a neuronal cell line as well as in vivo complementation studies in a Drosophila model identify a role for ZC3H14 in proper control of poly(A) tail length in neuronal cells. Furthermore, we show here that human ZC3H14 can functionally substitute for dNab2 in fly neurons and can rescue defects in development and locomotion that are present in dNab2 null flies. These rescue experiments provide evidence that this zinc finger-containing class of nuclear polyadenosine RNA-binding proteins plays an evolutionarily conserved role in controlling the length of the poly(A) tail in neurons.  相似文献   
2.
3.
4.
In epithelial ovarian cancer (EOC), the cancer antigen 125 (CA-125) has been conventionally used to help in diagnosis and assessment of response to treatment. Currently, YKL-40 (Tyrosine–Lysine–Leucine-40) and circulating cell-free DNA are being evaluated for possession of similar ability. In this study, we aimed to assess the ability of a repertoire of potential biomarkers in detecting and assessing therapeutic response, in advanced EOC. Blood levels of CA-125, YKL-40, total cell-free DNA (CFDNA), cell-free nuclear DNA (CFnDNA), and cell-free mitochondrial DNA (CFmDNA) levels were measured in 100 untreated patients of advanced EOC from November 2009 to June 2011, and again on treatment completion from the 20 patients who appeared for follow-up analysis. Significantly, higher proportion of untreated patients had serum CA-125 >3 times upper limit of normal (ULN) (90.0 %; P < 0.0001) and plasma YKL-40 >ULN (77.0 %; P < 0.0001), both of which significantly decreased, Posttherapy. posttherapy, CFDNA (P < 0.0001), and CFnDNA (P < 0.0001) levels significantly decreased as compared to pretreatment levels. Positive and significant correlations existed between pretherapy CFDNA and CFnDNA [Spearman rho (ρ) = 1.000; P < 0.0001], and also with CFmDNA (ρ = 0.301; P = 0.002), separately between CFnDNA and CFmDNA (ρ = 0.303; P = 0.002), as well as between plasma YKL-40 and patient age (ρ = 0.353; (P < 0.0001). On treatment completion, CFDNA and CFnDNA levels showed positive and significant correlation (ρ = 1.000; P < 0.0001). Therefore serum CA-125 and plasma YKL-40 aid detection and assessment of therapeutic response, in advanced EOC. CFDNA and CFnDNA help in estimating extent of therapeutic response in advanced EOC.  相似文献   
5.
Heat shock protein 70 (HSP70) is one of the most abundant and best characterized heat shock protein family that consists of highly conserved stress proteins, expressed in response to stress, and plays crucial roles in environmental stress tolerance and adaptation. The present study was conducted to identify major types of genes under the HSP70 family and to quantify their expression pattern in heat- and cold-adapted Indian goats (Capra hircus) with respect to different seasons. Five HSP70 gene homologues to HSPA8, HSPA6, HSPA1A, HSPA1L, and HSPA2 were identified by gene-specific primers. The cDNA sequences showed high similarity to other mammals, and proteins have an estimated molecular weight of around 70 kDa. The expression of HSP70 genes was observed during summer and winter. During summer, the higher expression of HSPA8, HSPA6, and HSPA1A was observed, whereas the expression levels of HSPA1L and HSPA2 were found to be lower. It was also observed that the expression of HSPA1A and HSPA8 was higher during winter in both heat- and cold-adapted goats but downregulates in case of other HSPs. Therefore, both heat and cold stress induced the overexpression of HSP70 genes. An interesting finding that emerged from the study is the higher expression of HSP70 genes in cold-adapted goats during summer and in heat-adapted goats during winter. Altogether, the results indicate that the expression pattern of HSP70 genes is species- and breed-specific, most likely due to variations in thermal tolerance and adaptation to different climatic conditions.  相似文献   
6.
7.
8.
9.

Book Review

Techniques in molecular biologyJ.M. Walker and W. Gaastra (Eds.), vol. 2. London: Croom Helm, 1987. iv + 332 pages. £14.95. ISBN 0-7099-3673-7  相似文献   
10.
While ~30% of the human genome encodes membrane proteins, only a handful of structures of membrane proteins have been resolved to high resolution. Here, we studied the structure of a member of the Cys-loop ligand gated ion channel protein superfamily of receptors, human type A γ2α1β2α1β2 gamma amino butyric acid receptor complex in a lipid bilayer environment. Studying the correlation between the structure and function of the gamma amino butyric acid receptor may enhance our understanding of the molecular basis of ion channel dysfunctions linked with epilepsy, ataxia, migraine, schizophrenia and other neurodegenerative diseases. The structure of human γ2α1β2α1β2 has been modeled based on the X-ray structure of the Caenorhabditis elegans glutamate-gated chloride channel via homology modeling. The template provided the first inhibitory channel structure for the Cys-loop superfamily of ligand-gated ion channels. The only available template structure before this glutamate-gated chloride channel was a cation selective channel which had very low sequence identity with gamma aminobutyric acid receptor. Here, our aim was to study the effect of structural corrections originating from modeling on a more reliable template structure. The homology model was analyzed for structural properties via a 100 ns molecular dynamics (MD) study. Due to the structural shifts and the removal of an open channel potentiator molecule, ivermectin, from the template structure, helical packing changes were observed in the transmembrane segment. Namely removal of ivermectin molecule caused a closure around the Leu 9 position along the ion channel. In terms of the structural shifts, there are three potential disulfide bridges between the M1 and M3 helices of the γ2 and 2 α1 subunits in the model. The effect of these disulfide bridges was investigated via monitoring the differences in root mean square fluctuations (RMSF) of individual amino acids and principal component analysis of the MD trajectory of the two homology models—one with the disulfide bridge and one with protonated Cys residues. In all subunit types, RMSF of the transmembrane domain helices are reduced in the presence of disulfide bridges. Additionally, loop A, loop F and loop C fluctuations were affected in the extracellular domain. In cross-correlation analysis of the trajectory, the two model structures displayed different coupling in between the M2–M3 linker region, protruding from the membrane, and the β1-β2/D loop and cys-loop regions in the extracellular domain. Correlations of the C loop, which collapses directly over the bound ligand molecule, were also affected by differences in the packing of transmembrane helices. Finally, more localized correlations were observed in the transmembrane helices when disulfide bridges were present in the model. The differences observed in this study suggest that dynamic coupling at the interface of extracellular and ion channel domains differs from the coupling introduced by disulfide bridges in the transmembrane region. We hope that this hypothesis will be tested experimentally in the near future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号